1.ELMo
ELMo(Embedding from Language Model)是一种基于LSTM的词向量的生成方式,采用两个单向LSTM。词向量的表示基于当前的句子上下文,高层LSTM捕捉上下文的词特征(语义),底层LSTM捕捉句法层次信息(语法)。网络架构如下图:

其中,前向语言模型:

后向语言模型:

目标函数最大化:

优点是解决了一词多义,在一些任务上有提升。
缺点是LSTM串行,训练成本大,LSTM对长距离的提取特征不如Transformer。
2.GPT
GPT(Generative Pre-Training)是使用Transformer的Decoder部分的预训练模型,架构如下:

无监督训练:

有监督微调:

参考资料
[1]Deep contextualized word representations
[2]Improving Language Understandingby Generative Pre-Training

本文深入探讨了ELMo和GPT两种自然语言处理技术。ELMo通过基于上下文的词向量解决了词义消歧问题,而GPT则利用Transformer架构进行无监督预训练,提升了语言理解能力。
1494

被折叠的 条评论
为什么被折叠?



