NLP基础(八):ELMO和GPT模型

本文深入探讨了ELMo和GPT两种自然语言处理技术。ELMo通过基于上下文的词向量解决了词义消歧问题,而GPT则利用Transformer架构进行无监督预训练,提升了语言理解能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.ELMo

ELMo(Embedding from Language Model)是一种基于LSTM的词向量的生成方式,采用两个单向LSTM。词向量的表示基于当前的句子上下文,高层LSTM捕捉上下文的词特征(语义),底层LSTM捕捉句法层次信息(语法)。网络架构如下图:
网络架构
其中,前向语言模型:
前向语言模型
后向语言模型:
后向语言模型
目标函数最大化:
目标函数最大化
优点是解决了一词多义,在一些任务上有提升。

缺点是LSTM串行,训练成本大,LSTM对长距离的提取特征不如Transformer。

2.GPT

GPT(Generative Pre-Training)是使用Transformer的Decoder部分的预训练模型,架构如下:

GPT
无监督训练:
无监督训练
有监督微调:
有监督微调

参考资料
[1]Deep contextualized word representations
[2]Improving Language Understandingby Generative Pre-Training

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值