古典概型事件数计算, 分房,配对,乱序 (概统1)

这篇博客介绍了古典概型中的事件数计算,包括分房问题、配对问题和乱序问题。对于分房问题,讨论了指定房间有人、恰有指定数量房间有人的情况。在配对问题中,通过手套问题分析了不同成对情况的概率。乱序问题则探讨了钥匙与锁匹配的配对概率,涉及著名的Derangement问题。最后,举例分析了排列字母形成特定单词的概率。
摘要由CSDN通过智能技术生成

###古典概型事件数与概率计算:分房问题,配对问题,乱序问题,字母排列(概统1)

最重要是计算各种古典概型的事件数,需要计算事件总共样本数,事件A的事件数,计算过程中常用到排列组合的知识。有时也需要用到逐一列举法逐一分析A中的基本事件数。

这里写图片描述

所以,关键就是如何计算事件数,包括总样本空间的事件数,有利事件的事件数。下面讨论几种典型场景

【场景一:分房问题】 N个房间,n个人。(n < N)
每个人等可能分配机会。
(1)A=“某指定的n间房中各有一人”;
(2)B=“恰有n间房各有一人”;
(3)C=“某指定的一间房中恰有m人(m $\leqslant $ n 人);

【解答】

分房问题总事件样本数:= N n N^{n} Nn

这里写图片描述
n个人N间房,随机分配,每个房间人数不等,可能某间房有0个人,可能有n个人。
分析过程:
对第一个人来说,既然有N间房,就有N种分配可能性。
第二个人不受第一个人影响,N间房可以任意选择,可以与第一个人同一间房。
第i个人还是N种选择可能性。。。
总共n个人,分配n次,所以总事件样本数 = N n N^{n} Nn

(1)A=“某指定的n间房中各有一人”;这是典型的“一个萝卜一个坑”“一人一房问题”,
>"一人一房问题"事件数=n!

某指定的n间房,等于说忽略其他房,假设只有n间房。
人数与房间数相等,一一对应,每个人一个房间,
一人一间房,这种叫做“一人一房问题”,一人一房问题的事件数是 n!

所以 P(A)=$\frac{n!}{N^{n}} $

(2)B=“恰有n间房各有一人”;
恰有n间房,等于说N间房里面,刚好挑选出n间。这个事件数是= C N n C_{N}^{n} CNn
再然后 n间房一人一房,等于(1)。

所以合起来就等于 P(A)= C N n ∗ n ! N n C_{N}^{n} * \frac{n!}{N^{n}} CNnNnn!

(3)C=“某指定的一间房中恰有m人(m $\leqslant $ n 人);
"某指定的一间房“ 等于说房间不需要考虑排列组合去选择,忽略其他房。
某指定的一间房中恰有m人:从n个里面选择m个人,其余没被选中的人随机分配去其他房。
n个人选择m个人,事件数= C n m C_{n}^{m} Cnm

剩下n-m个人,剩下N-1个房间,n-m个人随机分配到N-1个房间,
事件数= ( N − 1 ) n − m (N-1)^{n-m} (N1)nm

总和起来就是 P(A)= C n m C_{n}^{m} Cnm * $\frac{(N-1){n-m}}{N{n}} $

总结:n人N房问题,事件数= N n N^{n} Nn
一人一房问题,事件数=n!

【场景二:配对问题】
【手套问题】从n双不同的手套中任取2r(2r< n)只,求下列事件发生的概率:
(1)没有成双的手套
(2)只有一双手套
(3)恰有两双手套
(4)有r双手套

【解答】这个题目很坑人啊,注意是n双”不同的“手套,我开始还以为是n双一样的,没注意这个”不同“的字眼。这n双手套都是不同的,有可能是n双尺码不同,有可能是n双颜色不同。

总共有n双=2n只,取2r只,2r< n ,也就是说 r< n/2
举例,n=6,6双手套,取r=2,取 2*2=4只,

(1)没有成双的手套
这里写图片描述
没有成双的手套,就是2r只全部都从左边一溜(n只,2r<=n)取,事件数就是 C n 2 r C_{n}^{2r} Cn2r
然后每一只都有两种取法,每一只都可以要么取左边,要么取右边,但是就是不能同一双左右两边都取,就是 C 2 1 C 2 1 . . . C_{2}^{1}C_{2}^{1}... C21C21... ,总共有2r个 C 2 1 C_{2}^{1} C21

总体就是,2r只取左边一溜(n只),然后每只都有两种取法, C 2 1 C_{2}^{1} C21

没有成双的手套,事件数 = C n 2 r C_{n}^{2r} Cn2r ( C 2 1 ) 2 r (C_{2}^{1})^{2r} (C21)2r
样本总空间事件数 = C 2 n 2 r C_{2n}^{2r} C2n2r

所以,没有成双的手套,概率 P(A) = C n 2 r ( C 2 1 ) 2 r C 2 n 2 r \frac{C_{n}^{2r} (C_{2}^{1})^{2r}}{C_{2n}^{2r}} C2n2rCn2r(C21)2r

(2)只有一双手套

只有一双手套,意思是说,左边一溜中,有一只已经被左右同时取走了,
剩下不配套的只有n-1只。n只里面取一只作为配套的取法是: C n 1 C_{n}^{1} Cn1

然后剩下n-1只里面,还需要取2r-2只,就是 C n − 1 2 r − 2 C_{n-1}^{2r-2} Cn12r2

然后,这2r-2只里面,每一只都有 C 2 1 C_{2}^{1} C21 取法,总共就是 ( C 2 1 ) 2 r − 2 (C_{2}^{1})^{2r-2} (C21)2r2

所以,取2r只,只有一双能配套的事件数就是 = C n 1 C_{n}^{1} Cn1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值