算法知识点——(3)监督学习——SVM

本文深入探讨支持向量机(SVM)的原理,包括目标函数、KKT条件、拉格朗日乘子法、SMO算法以及软间隔。此外,还讨论了SVM在处理多分类、样本不平衡和大数据等问题时的策略,以及与逻辑回归的区别和SVM的优缺点。
摘要由CSDN通过智能技术生成

目录

一、支持向量机原理

1. SVM目标

2. 距离与数据定义

3. 目标函数推导

4. 目标函数求解

4.1 KKT条件

4.2 拉格朗日乘子法——强对偶性

4.3 拉格朗日乘子法—— 求解

4.4 SMO算法——求解max ()

5. 软间隔

6. SVM核变换

二、常见问题

1. LR和SVM区别

2. SVM损失函数

3. SVM的原理是什么?

4. 对偶计算的作用

5. 为什么SVM对缺失数据、噪声敏感

6. SVM如何处理多分类问题

7. SVM如何处理样本不平衡的问题

8. SVM用在大数据的缺陷

9. SVM优缺点


一、支持向量机原理

1. SVM目标

SVM可以用于二分类或多分类,此处以二分类为例。SVM的目标是寻找一个最优化超平面可以在空间中分割两类数据,这个最优化超平面需要满足的条件是:离其最近的点到其的距离最大化。

一句话解释:最大化离超平面最近点(支持向量)到该平面的距离。

2. 距离与数据定义

点x到空间直线w^Tx+b的距离为:

                                                                     d=\frac{|w^Tx+b|}{||w||}                                                 (1)

      y_{i}就是标签,假设这里是二分类问题,其值是1和-1,其保证了不论样本属于哪一类,最终值都保证是正数,则有:

                                                                        \large \left\{\begin{matrix} y(x_i)>0 \Leftrightarrow y_i=+1\\ y(x_i)<0 \Leftrightarrow y_i=-1 \end{matrix}\right.\\ \Rightarrow y_i(x^Tx+b)>0                             (2)

3. 目标函数推导

由1中的图可知,支持向量到达我们要优化的超平面 w^Tx+b=0的距离就是 \frac{1}{||w||},两侧的距离加起来就是\frac{2}{||w||}

则目标函数为:

                                                 \large argmax \quad \frac{1}{||w||}min[y_i\cdot (w^Tx_i+b)]                               (3)

其中min 为找最近的支持向量,argmax为找到什么样的w,b到平面的距离越远越好

假设支持向量到超平面的函数距离设为1,自然其他非最近点的函数距离便是大于1,于是得到不等式约束优化问题:

                                                      \large \left\{\begin{matrix} max \frac{2}{||w||}\\ s.t.\quad y_i(w^Tx_i+b)\geq 1 ,i=1,2,...,m \end{matrix}\right.                   (4)

4. 目标函数求解

由于最大值问题不好求解,因此将公式4转换为:                           

                                                               \large \left\{\begin{matrix} min\ \frac{1}{2}||w||^2\\ s.t.\quad y_i(w^Tx_i+b)\geq 1 ,i=1,2,...,m \end{matrix}\right.                     (5)

4.1 KKT条件

  1. \large \frac{\delta L}{\delta w}=0, \quad \frac{\delta L}{\delta b}=0, \quad \frac{\delta L}{\delta \lambda }=0

  2. \large \lambda _i[1-y_i(w^Tx_i+b)]=0

  3. \large \lambda _i\geq 0

  4. \large 1-y_i(w^Tx_i+b)\leqslant 0

4.2 拉格朗日乘子法——强对偶性

将带约束的优化问题(公式5)转换为不带约束的

                                              \large L(w,b,\alpha)= \frac{1}{2} ||w||^2 +\sum_{i=1}^{n}\alpha_i[1-y_i(w^Tx_i+b)]                              (6)

         分两种情况对公式(6)考虑

(1) \large 1-y_i(w^Tx_i+b)\geq 0时,\large max \ L(w,b,\alpha)为无穷大,无意义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值