【考研数学】高等数学第三模块——积分学 | Part II 定积分(一般性质及特殊性质)

前言

上文说到了定积分部分的定义,现在继续从定积分的基本性质开始。

二、定积分及其应用

2.2 定积分的一般性质

性质 1 —— f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 为区间 [ a , b ] [a,b] [a,b] 上的可积函数, k 1 , k 2 k_1,k_2 k1,k2 为常数,则 ∫ a b [ k 1 f ( x ) + k 2 g ( x ) ] d x = k 1 ∫ a b f ( x ) d x + k 2 ∫ a b g ( x ) d x . \int_a^b[k_1f(x)+k_2g(x)]dx=k_1\int_a^bf(x)dx+k_2\int_a^bg(x)dx. ab[k1f(x)+k2g(x)]dx=k1abf(x)dx+k2abg(x)dx.

即常数可以提到积分外面去;积分具有可加性。

性质 2 —— f ( x ) f(x) f(x) 为可积函数,则 ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x . \int_a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx. abf(x)dx=acf(x)dx+cbf(x)dx.

即积分的区间可以进行拆成多个小区间相加。

性质 3 —— 关于积分的比较性质:
(1)设 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上可积且 f ( x ) ≥ 0 f(x) \geq0 f(x)0 ,则 ∫ a b f ( x ) d x ≥ 0 ; \int_a^bf(x)dx \geq0; abf(x)dx0;
(2)设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 为区间 [ a , b ] [a,b] [a,b] 上的可积函数且 f ( x ) ≥ g ( x ) f(x) \geq g(x) f(x)g(x) ,则 ∫ a b f ( x ) d x ≥ ∫ a b g ( x ) d x ; \int_a^bf(x)dx \geq \int_a^bg(x)dx; abf(x)dxabg(x)dx;
(3)设 f ( x ) f(x) f(x) 以及 ∣ f ( x ) ∣ |f(x)| f(x) 在区间 [ a , b ] [a,b] [a,b] 上可积,则 ∣ ∫ a b f ( x ) d x ∣ ≥ ∫ a b ∣ f ( x ) ∣ d x . |\int_a^bf(x)dx| \geq \int_a^b|f(x)|dx. abf(x)dxabf(x)dx.
性质5——(积分中值定理) f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的连续函数,则存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b] ,使得: ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . \int_a^bf(x)dx=f(\xi)(b-a). abf(x)dx=f(ξ)(ba). 证明:利用介值定理进行证明:

因为 f ( x ) f(x) f(x) 连续,所以在区间 [ a , b ] [a,b] [a,b] 上存在最小值 m m m 和最大值 M M M ,有 m ≤ f ( x ) ≤ M m \leq f(x) \leq M mf(x)M ,两边同时积分,有 m ( b − a ) ≤ ∫ a b f ( x ) ≤ M ( b − a ) m(b-a) \leq \int_a^bf(x) \leq M(b-a) m(ba)abf(x)M(ba) ,即: m ≤ 1 b − a ∫ a b f ( x ) d x ≤ M m \leq \frac{1}{b-a}\int_a^bf(x)dx \leq M mba1abf(x)dxM 由介值定理,可知原命题得证。

1 b − a ∫ a b f ( x ) d x \frac{1}{b-a}\int_a^bf(x)dx ba1abf(x)dx 也称为函数在该区间的平均值。

积分中值定理的中值 ξ \xi ξ 为闭区间,有些时候无法证明应用去证明开区间的结论,因此有如下推广。

定理 1 —— 积分中值定理推广 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的连续函数,则存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得: ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . \int_a^bf(x)dx=f(\xi)(b-a). abf(x)dx=f(ξ)(ba). 证明:利用拉氏定理证明:

F ( x ) = ∫ a x f ( x ) d x F(x)=\int_a^xf(x)dx F(x)=axf(x)dx f ( x ) f(x) f(x) 为连续函数(可积),故原函数 F ( x ) F(x) F(x) 可导且 F ′ ( x ) = f ( x ) . F'(x)=f(x). F(x)=f(x).
由拉氏定理,存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得 ∫ a b f ( x ) d x = F ( b ) − F ( a ) = F ′ ( ξ ) ( b − a ) \int_a^bf(x)dx=F(b)-F(a)=F'(\xi)(b-a) abf(x)dx=F(b)F(a)=F(ξ)(ba) F ′ ( ξ ) = f ( ξ ) F'(\xi)=f(\xi) F(ξ)=f(ξ) ,故原命题得证。

定理 2 —— 积分第一中值定理 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) 为区间 [ a , b ] [a,b] [a,b] 上的连续函数,且 g ( x ) ≥ 0 g(x) \geq 0 g(x)0 ,则存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b] ,使得 ∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x . \int_a^bf(x)g(x)dx=f(\xi)\int_a^bg(x)dx. abf(x)g(x)dx=f(ξ)abg(x)dx.

即可以把没有确定符号的函数提出来,出现两个函数相乘时的积分可以考虑。

证明: 由连续,可知 f ( x ) f(x) f(x) m ≤ f ( x ) ≤ M m \leq f(x) \leq M mf(x)M ,因为 g ( x ) ≥ 0 g(x) \geq 0 g(x)0 ,则 m g ( x ) ≤ f ( x ) g ( x ) ≤ M g ( x ) mg(x) \leq f(x)g(x) \leq Mg(x) mg(x)f(x)g(x)Mg(x) ,同时积分,有 m ∫ a b g ( x ) d x ≤ ∫ a b f ( x ) g ( x ) d x ≤ M ∫ a b g ( x ) d x . m\int_a^bg(x)dx \leq \int_a^bf(x)g(x)dx \leq M\int_a^bg(x)dx. mabg(x)dxabf(x)g(x)dxMabg(x)dx.

(1) g ( x ) = 0 g(x)=0 g(x)=0 ,则 ∫ a b g ( x ) d x = 0 \int_a^bg(x)dx=0 abg(x)dx=0 ,则 ∀ ξ ∈ [ a , b ] \forall \xi \in [a,b] ξ[a,b] ,原命题都成立。
(2) g ( x ) > 0 g(x) >0 g(x)>0 ,不等式同时除以 ∫ a b g ( x ) d x \int_a^bg(x)dx abg(x)dx ,则有 m ≤ ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x ≤ M m \leq \frac{\int_a^bf(x)g(x)dx}{\int_a^bg(x)dx} \leq M mabg(x)dxabf(x)g(x)dxM 根据介值定理,存在 ξ ∈ [ a , b ] \xi \in [a,b] ξ[a,b] ,使得 m ≤ f ( ξ ) ≤ M m \leq f(\xi) \leq M mf(ξ)M ,故原命题得证。

✨定理 3 —— 分别是判断符号的三个小定理,在证明积分不等式时比较重要。
在这里插入图片描述
定理 4 —— (柯西不等式) f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b] 上连续,则有: ( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x . (\int_a^bf(x)g(x)dx)^2 \leq \int^b_af^2(x)dx \int_a^bg^2(x)dx. (abf(x)g(x)dx)2abf2(x)dxabg2(x)dx.

证明:对任意的 t ∈ R t \in R tR ,有 [ t f ( x ) + g ( x ) ] 2 ≥ 0 [tf(x)+g(x)]^2 \geq 0 [tf(x)+g(x)]20 ,展开即 f 2 ( x ) t 2 + 2 f ( x ) g ( x ) t + g 2 ( x ) ≥ 0 f^2(x)t^2+2f(x)g(x)t+g^2(x) \geq0 f2(x)t2+2f(x)g(x)t+g2(x)0 ,两边在 [ a , b ] [a,b] [a,b] 上积分有: [ ∫ a b f 2 ( x ) d x ] t 2 + [ 2 ∫ a b f ( x ) g ( x ) d x ] t + ∫ a b g 2 ( x ) d x ≥ 0. [\int_a^bf^2(x)dx]t^2+[2\int_a^bf(x)g(x)dx]t+\int_a^bg^2(x)dx \geq0. [abf2(x)dx]t2+[2abf(x)g(x)dx]t+abg2(x)dx0. 定积分均为一个常数,因此上式可看作一个关于 t t t 的一元二次方程。
(1)若 ∫ a b f 2 ( x ) d x = 0 \int_a^bf^2(x)dx=0 abf2(x)dx=0 ,根据定理 3 ,可得到 f ( x ) ≡ 0 f(x) \equiv 0 f(x)0 ,原命题成立。
(2)若 ∫ a b f 2 ( x ) d x > 0 \int_a^bf^2(x)dx>0 abf2(x)dx>0 ,可知该一元二次方程的函数图像开口朝上,若要满足非负,则判别式应满足 Δ = 4 [ ∫ a b f ( x ) g ( x ) d x ] 2 − 4 ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x ≤ 0 \Delta =4[\int_a^bf(x)g(x)dx]^2-4\int^b_af^2(x)dx \int_a^bg^2(x)dx \leq0 Δ=4[abf(x)g(x)dx]24abf2(x)dxabg2(x)dx0 整理后,即可得到原命题。

2.3 定积分的特殊性质

2.3.1 ✨对称区间上定积分性质

在这里插入图片描述

当出现对称区间或者可以构造对称区间时,应想到利用这条性质,有时可发挥奇效。如计算下面的积分: I = ∫ − π 2 π 2 s i n 4 x 1 + e x d x . I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{sin^4x}{1+e^x}dx. I=2π2π1+exsin4xdx. 不利用这个性质感觉根本下不了手。 I = ∫ 0 π 2 ( s i n 4 x 1 + e x + s i n 4 x 1 + e − x ) d x = ∫ 0 π 2 s i n 4 x d x = 3 4 1 2 π 2 = 3 π 16 I=\int_0^{\frac{\pi}{2}} (\frac{sin^4x}{1+e^{x}}+\frac{sin^4x}{1+e^{-x}})dx=\int_0^{\frac{\pi}{2}}sin^4xdx=\frac{3}{4}\frac{1}{2}\frac{\pi}{2}=\frac{3\pi}{16} I=02π(1+exsin4x+1+exsin4x)dx=02πsin4xdx=43212π=163π

2.3.2 ✨三角函数定积分的性质

(1)设 f ( x ) ∈ C [ a , b ] f(x) \in C[a,b] f(x)C[a,b] ,则 ∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x \int_0^{\frac{\pi}{2}}f(sinx)dx=\int_0^{\frac{\pi}{2}}f(cosx)dx 02πf(sinx)dx=02πf(cosx)dx

也就是在 [ 0 , π 2 ] [0,\frac{\pi}{2}] [0,2π] 区间的积分中, s i n x sinx sinx 可以和 c o s x cosx cosx 相互调换位置,有时可发挥奇效。

其证明过程如下:
x + t = π 2 x+t=\frac{\pi}{2} x+t=2π ,则 ∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( s i n ( π 2 − t ) d t = ∫ 0 π 2 f ( c o s x ) d x \int_0^{\frac{\pi}{2}}f(sinx)dx=\int_0^{\frac{\pi}{2}}f(sin(\frac{\pi}{2}-t)dt=\int_0^{\frac{\pi}{2}}f(cosx)dx 02πf(sinx)dx=02πf(sin(2πt)dt=02πf(cosx)dx
证毕。

特别地,有 I n = ∫ 0 π 2 f ( s i n x ) d x = ∫ 0 π 2 f ( c o s x ) d x = n − 1 n I n − 2 I_n=\int_0^{\frac{\pi}{2}}f(sinx)dx=\int_0^{\frac{\pi}{2}}f(cosx)dx=\frac{n-1}{n}I_{n-2} In=02πf(sinx)dx=02πf(cosx)dx=nn1In2 I 0 = π 2 , I 1 = 1. I_0=\frac{\pi}{2},I_1=1. I0=2π,I1=1.

因此,以后若碰见 0 到 π 2 \pi \over{2} 2π 区间上只有 s i n , c o s sin,cos sin,cos 的高次幂,可以直接写出答案。如 ∫ 0 π 2 s i n 4 x d x = 3 4 1 2 I 0 = 3 π 16 \int_0^{\frac{\pi}{2}}sin^4xdx=\frac{3}{4}\frac{1}{2}I_0=\frac{3\pi}{16} 02πsin4xdx=4321I0=163π 另外补充,区间是 [ 0 , π ] [0,\pi] [0,π] 时, sin ⁡ \sin sin 不分奇偶次,不过需要乘个 2 ; cos ⁡ \cos cos 的次数如果是偶数,同 sin ⁡ \sin sin ,但如果是奇数,结果是 0 ;区间是 [ 0 , 2 π ] [0,2\pi] [0,2π] 时,分奇偶,奇数次为 0 ,偶数次需要多乘一个 4 。

(2)设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1] 上连续,则 ∫ 0 π f ( s i n x ) d x = 2 ∫ 0 π 2 f ( s i n x ) d x \int_0^\pi f(sinx)dx=2\int_0^{\frac{\pi}{2}}f(sinx)dx 0πf(sinx)dx=202πf(sinx)dx 即有: ∫ 0 π 2 f ( s i n x ) d x = ∫ π 2 π f ( s i n x ) d x . \int_0^\frac{\pi}{2} f(sinx)dx=\int_{\frac{\pi}{2}}^\pi f(sinx)dx. 02πf(sinx)dx=2ππf(sinx)dx. 证明如下: ∫ 0 π f ( s i n x ) d x = ∫ 0 π 2 f ( s i n x ) d x + ∫ π 2 π f ( s i n x ) d x \int_0^\pi f(sinx)dx=\int_0^{\frac{\pi}{2}} f(sinx)dx+ \int_{\frac{\pi}{2}}^\pi f(sinx)dx 0πf(sinx)dx=02πf(sinx)dx+2ππf(sinx)dx x − π 2 = t x-{\frac{\pi}{2}}=t x2π=t ,则 ∫ π 2 π f ( s i n x ) d x = ∫ 0 π 2 f ( c o s t ) d t = ∫ 0 π 2 f ( s i n x ) d x . \int_{\frac{\pi}{2}}^\pi f(sinx)dx=\int_0^{\frac{\pi}{2}} f(cost)dt=\int_0^{\frac{\pi}{2}} f(sinx)dx. 2ππf(sinx)dx=02πf(cost)dt=02πf(sinx)dx.
证毕。

这样化成了 [ 0 , π 2 ] [0,\frac{\pi}{2}] [0,2π] 区间上,碰上高次幂就可以用前面那个结论了。

(3)设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1] 上连续,则 ∫ 0 π x f ( s i n x ) d x = π 2 ∫ 0 π f ( s i n x ) d x = π ∫ 0 π 2 f ( s i n x ) d x \int_0^\pi xf(sinx)dx=\frac{\pi}{2}\int_0^\pi f(sinx)dx=\pi \int_0^{\frac{\pi}{2}} f(sinx)dx 0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx

有了这个结论,即便前面有 x x x 碍事,一样可以把它去掉,变成 [ 0 , π 2 ] [0,\frac{\pi}{2}] [0,2π] 范围内的积分。

此结论原理如下:
x + t = π x+t=\pi x+t=π ,则: I = ∫ 0 π x f ( s i n x ) d x = ∫ 0 π ( π − t ) f ( s i n t ) d t = ∫ 0 π π f ( s i n x ) d x − I I=\int_0^\pi xf(sinx)dx=\int_0^\pi (\pi -t)f(sint)dt=\int_0^\pi \pi f(sinx)dx-I I=0πxf(sinx)dx=0π(πt)f(sint)dt=0ππf(sinx)dxI 2 I = π ∫ 0 π f ( s i n x ) d x 2I=\pi\int_0^\pi f(sinx)dx 2I=π0πf(sinx)dx 两边除以 2 ,则原命题得证。

如果式子较为复杂,有很多干扰项,不知道是不是能直接去掉 x x x ,最好就自己用这个 x + t = π x+t=\pi x+t=π 代换,自己推一下。

(4)如果是一整个周期 2 π 2\pi 2π ,需要加上绝对值。

在这里插入图片描述

2.3.3 周期函数定积分的性质

在这里插入图片描述

写在最后

关于积分法我感觉更多是题目实战了,不多赘述。定积分还有广义积分和应用,放在后面吧。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Douglassssssss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值