深度学习入门-2(文本预处理,语言模型与数据集,循环神经网络)

一、文本预处理

这一节只是为下面处理自然语言做准备,没有任何深度学习方面的内容,利用一些基础算法将句子分词,并建立索引,基础好的可以直接略过。

1、基本概念

文本是一类序列数据,一篇文章可以看作是字符或单词的序列,预处理通常包括四个步骤:

  1. 读入文本
  2. 分词
  3. 建立字典,将每个词映射到一个唯一的索引(index)
  4. 将文本从词的序列转换为索引的序列,方便输入模型
2、读入文本
import collections
import re

def read_time_machine():
    with open('/home/kesci/input/timemachine7163/timemachine.txt', 'r') as f:
        lines = [re.sub('[^a-z]+', ' ', line.strip().lower()) for line in f]
    return lines


lines = read_time_machine()
print('# sentences %d' % len(lines))

输出:

 sentences 3221
3、分词

即将句子划分为若干词(token),换为一个词的序列:

def tokenize(sentences, token='word'):
    """Split sentences into word or char tokens"""
    if token == 'word':
        return [sentence.split(' ') for sentence in sentences]
    elif token == 'char':
        return [list(sentence) for sentence in sentences]
    else:
        print('ERROR: unkown token type '+token)

tokens = tokenize(lines)
tokens[0:2]

输出:

[['the', 'time', 'machine', 'by', 'h', 'g', 'wells', ''], ['']]
4、建立字典

为了方便模型处理,我们需要将字符串转换为数字。因此我们需要先构建一个字典(vocabulary),将每个词映射到一个唯一的索引编号。

class Vocab(object):
    def __init__(self, tokens, min_freq=0, use_special_tokens=False):
        counter = count_corpus(tokens)  # : 
        self.token_freqs = list(counter.items())
        self.idx_to_token = []
        if use_special_tokens:
            # padding, begin of sentence, end of sentence, unknown
            self.pad, self.bos, self.eos, self.unk = (0, 1, 2, 3)
            self.idx_to_token += ['', '', '', '']
        else:
            self.unk = 0
            self.idx_to_token += ['']
        self.idx_to_token += [token for token, freq in self.token_freqs
                        if freq >= min_freq and token not in self.idx_to_token]
        self.token_to_idx = dict()
        for idx, token in enumerate(self.idx_to_token):
            self.token_to_idx[token] = idx

    def __len__(self):
        return len(self.idx_to_token)

    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]

def count_corpus(sentences):
    tokens = [tk for st in sentences for tk in st]
    return collections.Counter(tokens)  # 返回一个字典,记录每个词的出现次数
5、将词转为索引

使用字典,我们可以将原文本中的句子从单词序列转换为索引序列

for i in range(8, 10):
    print('words:', tokens[i])
    print('indices:', vocab[tokens[i]])

输出:

words: ['the', 'time', 'traveller', 'for', 'so', 'it', 'will', 'be', 'convenient', 'to', 'speak', 'of', 'him', '']
indices: [1, 2, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0]
words: ['was', 'expounding', 'a', 'recondite', 'matter', 'to', 'us', 'his', 'grey', 'eyes', 'shone', 'and']
indices: [20, 21, 22, 23, 24, 16, 25, 26, 27, 28, 29, 30]

二、语言模型与数据集

自然语言文本可以看作是一个离散时间序列,语言模型的目标就是评估一个给定长度为T的词的序列是否合理,即计算该序列的概率:
在这里插入图片描述

1、语言模型基本概念

假设序列中的每个词w1,w2…wt都是依次生成的,则有:
在这里插入图片描述
其中w1的概率计算为:
在这里插入图片描述
其中n(w1)为语料库中以作为第一个词的文本的数量,n为语料库中文本的总数量。给定w1情况下,w2的条件概率可以计算为:
在这里插入图片描述
其中为n(w1,w2)为语料库中以w1作为第一个词,w2作为第二个词的文本的数量

2、马尔可夫链与n元语法

马尔科夫假设是指一个词的出现只与前面n个词相关,即n阶马尔可夫链(Markov chain of order n),n元语法是通过马尔可夫假设简化模型。基于n-1阶马尔可夫链,可将语言模型改写为:
在这里插入图片描述
以上也叫n元语法(n-grams),它是基于n-1阶马尔可夫链的概率语言模型。当n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。
例如,长度为4的序列在一元语法、二元语法和三元语法中的概率分别为
在这里插入图片描述
n元语法缺陷有参数空间过大和数据稀疏。

2、数据集——对时序数据采样
  1. 随机采样
    随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻,批量大小batch_size是每个小批量的样本数,num_steps是每个样本所包含的时间步数。随机采样示例图:
    在这里插入图片描述
  2. 相邻采样
    在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。相邻采样示例图:
    在这里插入图片描述
    相邻采样按列抽取,可转化为二维矩阵看:
    在这里插入图片描述

三、循环神经网络

使用循环计算的网络即循环神经网络(recurrent neural network)。

1、循环神经网络的基本概念

循环神经网络目的:基于当前的输入与过去的输入序列,预测序列的下一个字符。即以过去输入的字符序列为样本学习,基于当前的输入预测序列的下一个字符。
循环神经网络语言模型:
在这里插入图片描述
隐藏变量H,用H(t)表示H在时间步t的值(t时刻H的值)。H(t)的计算基于X(t)和H(t-1),可以认为H(t)记录了到当前字符为止的序列信息,利用H(t)对序列的下一个字符进行预测。

2、循环神经网络的构造

在这里插入图片描述
nd矩阵X(t)是时间步t的小批量输入,nh矩阵H(t)是该时间步的隐藏变量,W(x)(h)是dh矩阵,W(h)(h)是hh矩阵,b(h)是1*h矩阵各参数经过激活函数变换后得到H(t)。由于的计算H(t)基于H(t-1),所以上式的计算是循环的,即循环神经网络。
在时间步t,输出层的输出为:
在这里插入图片描述

3、裁剪梯度

循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设我们把所有模型参数的梯度拼接成一个向量g ,并设裁剪的阈值是θ。裁剪后的梯度
在这里插入图片描述
的L₂范数不超过θ。

4、困惑度

我们通常使用困惑度(perplexity)来评价语言模型的好坏,困惑度是对交叉熵损失函数做指数运算后得到的值。特别地,

最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。

显然,任何一个有效模型的困惑度必须小于类别个数

附:深度学习入门总目录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值