我认知中优秀图像调试工程师所拥有的特质

        图像调试工程师不仅仅是图像效果调试而已,一位优秀的图像调试工程师需要了解整个出图流程中的方方面面。包括但不限于图像的的采集、CIS的出图以及ISP和sensor的驱动等软硬件的知识。

        图像优化工作是综合运用图像算法、软件设计、CIS功能特性、客户需求理解以及经验总结等各方面知识解决问题的结果,涉及的领域也比较多,要做好是很有挑战的。

        在此我想说说我对一名优秀图像调试工程师的一些想法和认识:

  1.  一名优秀的图像调试工程师,首要的是能够及时交付符合客户图像质量需求的isp参数;
  2. 往上能够处理应用层面的图像相关问题,答复客户所提出的图像相关问题。诸如能够利用isp统计数据实现某些客户特定的需求:具体实现可以不需要图像调试工程师实现,但是至少需要思考过,有自己的想法;
  3. 往下能够了解甚至理解更加底层的基础知识。比如sensor驱动的曝光和增益更新函数的实现、ISP模块中几大重要模块的基本原理,诸如AWB/AE/Sharp等。能够协助驱动库同事定位sensor驱动曝光和增益实现函数中可能存在的问题;能够通过sensor数据手册确定对应帧率支持的最大最小曝光时间;确定最大最小增益倍数等
  4. 更进一步的要求是:能协助驱动、算法同事解决一些和sensor、ISP驱动和图形算法相关的图像问题。诸如偏色、闪烁、曝光或增益不生效等以及算法效果和仿真不符合预期等问题;而不是一出现问题就把问题甩给其他同事。你的每一次甩锅,失去的是一次成长的机会!优秀的图像调试工程师会再进一步说说自己做的一些实验,实验结果如何,这样有助于驱动同事快速定位问题;自己尝试定位解决的过程中,也将提升自己专业能力;把零散的知识,连成一片,形成自己独有的知识树。

        多尝试去解决一些在自己拉伸区的问题。通过不断尝试和参与解决当前拉伸区的问题,把当前拉伸区变为往后的舒适区,把当前的困难区变为往后的拉伸区。不断扩大舒适区、拉伸区和困难区,这样才有利于个人的不断成长;相反,如果一直待在自己的舒适区,不去尝试解决拉伸区的问题,那么这样相当于把一年工作经验用了多年。对个人的成长帮助极为有限!

        做出自己的选择,然后对做出的选择100%负责!

        以上,共勉之!

内容概要:本文是《目标检测入门指南》系列的第二部分,重点介绍用于图像分类的经典卷积神经网络(CNN)架构及其在目标检测中的基础作用。文章详细讲解了卷积操作的基本原理,并以AlexNet、VGG和ResNet为例,阐述了不同CNN模型的结构特点与创新点,如深层网络设计、小滤波器堆叠和残差连接机制。同时介绍了目标检测常用的评估指标mAP(平均精度均值),解释了其计算方式和意义。此外,文章还回顾了传统的可变形部件模型(DPM),分析其基于根滤波器、部件滤波器和空间形变代价的检测机制,并指出DPM可通过展开推理过程转化为等效的CNN结构。最后,介绍了Overfeat模型,作为首个将分类、定位与检测统一于CNN框架的先驱工作,展示了如何通过滑动窗口进行多尺度分类并结合回归器预测边界框。; 适合人群:具备一定计算机视觉和深度学习基础,从事或学习图像识别、目标检测相关方向的研发人员与学生;适合希望理解经典CNN模型演进及目标检测早期发展脉络的技术爱好者。; 使用场景及目标:①理解CNN在图像分类中的核心架构演变及其对后续目标检测模型的影响;②掌握mAP等关键评估指标的含义与计算方法;③了解DPM与Overfeat的设计思想,为深入学习R-CNN系列等现代检测器打下理论基础。; 阅读建议:此资源以综述形式串联多个经典模型,建议结合原文图表与参考文献进行延伸阅读,并通过复现典型模型结构加深对卷积、池化、残差连接等操作的理解,从而建立从传统方法到深度学习的完整认知链条。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大熊背

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值