基于分数的点云去噪:论文分享

摘要

从扫描设备获取的点云经常受到噪声的干扰,这会影响下游任务,如曲面重建和分析。噪声点云的分布可以看作是一组无噪声样本p(x)与某个噪声模型n卷积的分布,导致(p*n)(x)的模式是底层清洁表面。为了去除噪声点云,建议通过梯度上升迭代更新每个点的位置,从p*n增加每个点的对数似然。由于p*n在测试时是未知的,并且只需要分数(即对数概率函数的梯度)来执行梯度上升,因此提出了一种神经网络结构来估计pn的分数,仅将噪声点云作为输入。推导了训练网络的目标函数,并开发了一种基于估计分数的去噪算法。实验表明,在各种噪声模型下,该模型的性能优于现有的方法,并显示出在其他任务(如点云上采样)中应用的潜力。

1 引言

点云由从连续曲面不规则采样的离散三维点组成。它是一种越来越流行的表现形式,广泛应用于自动驾驶、机器人和身临其境的远程存在。然而,由于采集设备的固有限制或图像重建中的匹配模糊性,点云经常受到噪声的干扰。点云中的噪声会显著影响下游任务,例如渲染、重建和分析,因为底层结构会变形。因此,点云去噪对于相关的三维视觉应用至关重要。然而,由于点云的不规则性和无序性,点云清洁噪声去噪是一项具有挑战性的工作。

早期的点云去噪方法是基于优化的、严重依赖于几何先验,有时难以在细节保留和去噪效果之间取得平衡。最近,由于为点云精心设计的神经网络结构的出现,基于深度学习的方法已经出现,并取得了有希望的去噪性能。大多数基于深度学习的去噪模型预测噪声点从下垫面的位移,然后将逆位移应用于噪声点云。这类方法主要存在两种类型的伪影:收缩和异常值,这两种伪影是由位移的高估或低估引起的。相反,罗等人建议学习噪声点云的基本流形,以便在下采样-上采样体系结构中进行重建,这通过学习滤除数据中的高噪声点来缓解异常值问题。然而,下采样阶段不可避免地导致细节损失,尤其是在低噪声水平下。

在本文中,提出了一种基于噪声点云分布特性的点云去噪新方法。点云由从三维对象表面采样的点组成。因此,无噪声点云可以建模为二维流形支持的某个三维分布的一组样本。如果点云被噪声破坏,则噪声点云的分布可以建模为原始分布和某些噪声模型(例如高斯噪声)之间的卷积。在关于噪声模型的一些温和假设下,p*n的模式是底层清洁表面,其概率高于其周围空间。根据这一观察,去除噪声点云的噪声自然相当于将噪声点移向模式,这可以通过在对数概率函数上执行梯度上升来实现,如下图所示。由于在梯度上升的充分迭代之后,这些点有望收敛到分布模式,因此的方法对收缩和异常值等伪影具有更强的鲁棒性,而以前的方法对该模式没有意识。

图:建议的点云去噪方法的说明。首先从噪声点云估计噪声卷积分布的分数。然后,使用估计的分数执行梯度上升以去除点云的噪声。

然而,为了实现该方法,有一个主要的挑战需要解决,即在测试时p*n未知,必须仅从输入噪声点云进行估计。为了应对这一挑战,提出了一种保留细节的神经网络结构来估计输入噪声点云在对数概率下的分布分数,即对数概率函数的梯度。还制定了训练分数估计网络的目标函数,并开发了一种去噪算法。此外,从概率的角度对模型进行了分析,正式揭示了模型背后的原理。大量实验表明,该模型优于现有的方法,并有可能应用于其他任务,如点云上采样。

总而言之,这项工作的贡献包括:

  • 提出了一种新的点云去噪模式,利用噪声点云的分布模型并利用分布的分数。

  • 为了实现该方法,提出了一种用于噪声点云分数估计的神经网络结构,制定了训练网络的目标函数,并开发了去噪算法。

  • 大量实验证明了该方法在各种噪声模型下的性能。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值