inpainting学习笔记1

Inpainting是一种图像修复技术,通过利用图像未损坏部分的信息来修复破损区域或移除对象。常见应用于照片恢复和噪声消除,早期方法如像素插值适用于小区域修复。现代方法结合人工智能和机器学习,采用多层和多分辨率策略进行更复杂的图像修复。修复过程包括将图像划分为小块,在多个分辨率下查找信息并进行插值填充。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 inpainting定义:用图像中未破损的信息去修复破损区域或待去除区(即利用图像中未破损的信息进行图像修复或者修补)

主要是图像补色,通过提取周围图像特征,进行图像区域填充的方法,通常用于恢复受损的照片、去除或是降低图像中的噪声。其最大的缺点是如果直接将补色用于去除高光将会丢失高光区域中原有的图像特征。

主要开始于2000年,包含image inpainting / image completion, video inpainting, and 3-D surface completion.目前我所知道的方法有the analysis and usage of pixel properties in spatial and frequency domains.(pixel interpolation)不过这中方法主要用于小的区域。如果是大的区域的话,除了修复外,目前经常用remove object。目前有人开始使用人工智能和机器学习的方法进行inpainting.

刚在一篇文章中看到了一般的inpainting的方法与步骤:

The image inpainting technique can be summarized in the
following steps:
1.The image is subdivided into small blocks in multiple resolutions.
2. If no sufficient information can be found in a target block for inpainting, a larger block is used. Otherwise, the target block is inpainted using interpolation.
3. The above steps repeats until all blocks are inpainted.

同时也可以进一步利用多

### 图像修复技术概述 图像修复(Inpainting)是指通过算法自动填补图像中的缺失部分或遮挡区域,使修补后的图像看起来自然且连贯。这项技术广泛应用于去除图片中的不必要对象、恢复损坏的照片以及视频编辑等领域。 #### 基于深度学习的方法 近年来,基于卷积神经网络(CNN)的模型显著提升了图像修复的效果。这些方法通常分为两类: - **全局感知修复**:利用整个输入图作为上下文来预测丢失像素的颜色值。 - **局部细节重建**:专注于受损区域周围的特征提取与重构。 其中一种先进的解决方案是LaMa Image Inpainting[^1],该方案采用OnnxRuntime框架部署GPU加速版本demo程序,在处理大规模数据集时表现出优异性能;而另一个值得注意的是RFR-Inpainting工具[^2],它实现了循环特征推理机制用于改善修复质量并减少伪影现象。 #### C# 实现案例分析 对于希望在.NET环境中集成此类功能的应用开发者而言,可以参考如下简化流程展示如何调用预训练好的LaMa模型完成基本的任务需求: ```csharp using OpenCvSharp; // 加载原始待修照片及对应的二值掩码文件 image = new Mat(image_path); int w = image.Width; int h = image.Height; image_mask = new Mat(image_path_mask); // 准备好之后就可以按照官方文档指引加载ONNX格式导出的权重参数, // 并设置必要的运行环境配置项以启动会话执行推理过程... ``` 上述代码片段展示了读取源图像及其对应掩模的基本操作步骤[^4]。实际应用中还需要进一步完善前处理逻辑(比如调整尺寸匹配),并通过适当接口传递给底层计算引擎进行高效运算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值