如何更好的向deepseek/kimi等AI模型提问?

        现在DeepSeek非常火,注定会影响到各行各业,如何更好的应用各个大模型,以辅助我们更好的解决问题,更好的向deepseek等提问,也将是我们必须要学习的技能。以下推荐两个免费又好用的站点。

        (1)DeepSeek官网地址:DeepSeek | 深度求索

        (2)Kimi官方地址:Kimi.ai - 会推理解析,能深度思考的AI助手

        向DeepSeek(或任何AI模型)提问时,遵循以下结构化方法能显著提升回答质量。以下是优化提问的详细指南,附示例说明:


1. 明确问题目标

错误示范
"怎么训练模型?"
问题:目标模糊,缺乏上下文
正确示范
"如何用PyTorch在NVIDIA A100上训练一个5层的Transformer文本分类模型?数据集有10万条中文短文本,类别不均衡。"


2. 提供完整背景

关键要素

  • 任务类型(分类/生成/调参等)

  • 技术栈(框架、硬件)

  • 数据特征(规模、格式、特殊问题)

  • 已尝试方案(报错信息/效果)

示例
"我正在处理一个时间序列预测问题,使用TensorFlow 2.15和单卡RTX 4090。数据集包含3万条传感器记录,每条约1000个时间步,存在10%的缺失值。尝试过LSTM但验证集MAE始终高于训练集,学习曲线如下:[附图]。"


3. 分阶段拆解复杂问题

低效提问
"如何改进我的模型效果?"
优化策略

1. **数据问题**:  
   - 发现类别权重调整后F1提升有限  
   - 数据增强应选SMOTE还是GAN?  

2. **架构问题**:  
   - 当前使用ResNet-50,参数量是否过大?  
   - 有无轻量化替代方案(如MobileNetV3)?  

3. **训练技巧**:  
   - 学习率预热(warmup)设置多少epoch合适?  
   - 早停(early stopping)的耐心值如何选择?

4. 结构化输入输出示例

适用场景:调试代码/算法实现/数据格式问题
python示例模板

# 输入数据示例
input_data = [
    {"text": "这家餐厅服务很棒", "label": 1},
    {"text": "物流速度太慢", "label": 0}
]

# 当前处理代码
def preprocess(data):
    # 当前实现(含问题)
    return [item["text"][:10] for item in data]

# 期望输出
expected = ["这家餐厅服务", "物流速度太"]
# 实际得到
actual = ["这家餐厅服务", "物流速度太"]  # 发现截断丢失语义

5. 限制条件明确化

低效表达
"要一个高效的模型"
高效表达

- **精度要求**:测试集准确率 ≥ 92%  
- **时延限制**:单样本推理 < 50ms(CPU i7-12700)  
- **部署约束**:模型大小 ≤ 100MB  
- **兼容性需求**:需导出为ONNX格式

6. 验证性提问技巧

适用场景:确认理解/验证方案可行性
示例
"根据我的需求,是否可这样理解:

  1. 先用格拉姆角场(GAF)转换时序数据

  2. 再用轻量化CNN(如SqueezeNet)替代LSTM

  3. 最后用知识蒸馏压缩模型?
    如果否,请指出最优改进顺序。"


7. 进阶参考格式

技术问题模板

**问题类型**:模型训练/部署/数据预处理  
**现象描述**:[详细说明观察到的异常]  
**复现步骤**:  
1. 数据加载代码:`dataset = load_data(path)`  
2. 模型定义:[代码片段]  
3. 训练命令:`python train.py --lr 0.1`  
4. 出现报错:[完整错误日志]  

**已尝试方案**:  
- 调整学习率(0.01~0.5均无效)  
- 更换优化器(Adam→SGD效果更差)  

8. 避免常见误区

误区改进建议
问题过于开放(如"解释深度学习")限定范围:"用生物学类比解释神经网络反向传播"
多问题混杂分点提问:
1. 梯度消失解决方案
2. 权重初始化方法对比
忽略版本信息明确环境:"PyTorch 2.1.1+cu118, Python 3.10"

效果对比案例

低效提问
"我的模型不收敛怎么办?"
优化后提问

**任务**:图像分类(CIFAR-10)  
**环境**:  
- PyTorch 1.12.1  
- RTX 3090, CUDA 11.6  

**现象**:  
- 训练loss震荡在2.3附近(初始值2.3)  
- 验证准确率始终≈10%(随机猜测水平)  

**已检查项**:  
1. 数据加载:确认shuffle和归一化正确  
2. 损失计算:`nn.CrossEntropyLoss()`  
3. 学习率:尝试过1e-3到1e-5  

**模型结构**:  
```python
class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc = nn.Linear(3072, 10)  # 直接全连接
    # 前向传播省略...

         通过以上结构化方法,可使DeepSeek更精准定位问题核心,提供针对性解决方案。建议保存此指南作为提问前的检查清单。

### 关于 DeepSeekKimi 的 IT 项目合作 #### DeepSeek V3 集成 AMD Instinct GPU 就在1月25日(周六),英伟达的老对手AMD已经为DeepSeek“站台”,宣布全新的DeepSeek-V3模型已集成至AMD Instinct GPU上,并借助SGLang进行了性能优化。此次集成将助力加速前沿人工智能应用与体验的开发[^1]。 #### 开发者社区支持和技术交流 开发者可以利用这样的硬件和软件组合来提升自己的项目效率,尤其是在处理大规模数据集或是复杂的人工智能算法时。通过参与像AMD这样大型公司的官方论坛和支持渠道,可以获得更多的技术支持以及与其他开发者的交流合作机会。 #### 构建基于 DeepSeek 的本地知识库实践案例 对于想要构建简单本地知识库的技术人员来说,可以通过使用DeepSeek-R1来进行尝试。这不仅涉及到RAG(检索增强生成)原理的应用,还包括具体的模型安装过程,比如Nomic-Embed-Text 模型和AnythingLLM 安装等步骤[^2]。 ```python # 示例代码:假设这是用于加载预训练模型的部分Python脚本 from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "nomic-ai/gpt4all-j" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` #### 探讨 AIGC 对程序员职业发展的影响 随着人工智能生成内容(AIGC)的发展,程序员面临着新的机遇与挑战。例如,在技术多样性方面,广泛学习多种编程语言和技术框架可以帮助个人更好地适应不同类型的项目需求;而在特定领域内,则有专注于聊天机器人开发、AI艺术创作、Web端AI集成等领域的机会等待探索[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搏博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值