模型优化之强化学习(RL)与监督微调(SFT)的区别和联系

        强化学习(RL)与监督微调(SFT)是机器学习中两种重要的模型优化方法,它们在目标、数据依赖、应用场景及实现方式上既有联系又有区别。

        

        想了解有关deepseek本地训练的内容可以看我的文章:

本地基于GGUF部署的DeepSeek实现轻量级调优之一:提示工程(Prompt Engineering)(完整详细教程)_deepseek gguf-CSDN博客

本地基于GGUF部署的DeepSeek实现轻量级调优之二:检索增强生成(RAG)_deepseek 检索增强-CSDN博客

一、核心定义

1.监督微调(SFT)

        监督微调(SFT)是使用有标签的数据来调整一个预训练模型。是在预训练的基础上,用特定任务的数据进行进一步的训练,让模型适应具体的任务。比如,在自然语言处理中,预训练模型如BERT或GPT已经在大规模文本上进行了训练,然后通过SFT在特定任务的数据集(如问答、分类)上进行微调,以提高在该任务上的性能。这时候模型通过监督学习,利用输入和对应的标签来调整参数,最小化预测误差。

        定义:基于有标签数据对预训练模型进行任务适配,通过最小化预测误差(如交叉熵损失)调整模型参数。

        示例:使用标注的对话数据微调语言模型,使其生成符合特定风格的回复。

2.强化学习(RL)

        强化学习(RL)可能指的是在大规模环境中应用强化学习技术。强化学习通常涉及智能体与环境互动,通过试错来学习策略,以最大化累积奖励。规模RL可能是在复杂、高维度的环境中,比如训练机器人、游戏AI或者自动驾驶系统,使用大量计算资源和数据来进行训练。这时候模型不是通过直接的标签来学习,而是通过奖励信号来调整策略,逐步优化行为

        定义:通过环境交互和奖励信号优化策略,目标是最大化长期累积奖励,依赖试错探索与反馈机制。

        示例:训练游戏AI通过试错学习最优策略,或优化对话系统的回复质量(如流畅性、安全性)。

二、核心联系

        SFT与RL之间的联系。首先,两者都是用于优化模型性能的技术,都是在预训练的基础上进行的后续调整SFT依赖于有标签的数据,而RL则依赖于奖励机制。但在某些情况下,可能会有结合使用的情况,比如先用SFT进行初步调整,再用RL进一步优化,特别是在需要复杂决策的任务中。例如,对话系统可能先用监督学习生成合理的回复,再用RL优化回复的流畅性和相关性。

维度

共同点

优化目标

均旨在提升模型在特定任务上的性能。

依赖预训练

通常基于预训练模型(如LLM)进行后续优化。

技术结合

可联合使用(如先用SFT初始化策略,再用RL微调)。

领域适配

均可用于垂直领域(如医疗、金融)的模型定制化。

三、核心区别

        SFT与RL之间的区别。SFT是监督学习的一种,需要明确的“输入-输出对”,依赖于高质量的有标签数据。而RL则是无监督或部分监督的,依赖奖励信号,可能不需要每个步骤都有正确的标签。此外,RL通常需要更多的交互数据,因为智能体需要与环境互动来探索不同的行为并评估其效果,这可能导致更高的计算成本和训练时间。而SFT可能更高效,因为数据是静态的,可以直接用于训练。

        另外,它们的目标不同。SFT的目标是最小化预测错误,即让模型的输出尽可能接近真实标签。而RL的目标是最大化长期累积奖励,这可能需要更复杂的策略优化,考虑未来的影响而不仅仅是当前步骤的正确性。

        还有稳定性方面的区别。SFT由于有明确的标签,训练过程可能更稳定,收敛速度更快。而RL由于奖励信号可能稀疏、延迟,或者环境动态复杂,训练可能更不稳定,容易陷入局部最优或需要更复杂的探索策略。

维度

监督微调(SFT)

规模强化学习(RL)

数据需求

依赖静态、有标签的数据集(输入-输出对)。

依赖动态交互数据,通过环境反馈生成奖励信号。

优化目标

最小化预测误差(监督损失)。

最大化长期累积奖励(策略梯度优化)。

反馈机制

明确的标签指导,直接监督每个输出。

稀疏或延迟的奖励信号,需探索与利用平衡。

训练稳定性

收敛快且稳定(确定性优化)。

易受探索策略影响,训练波动大,需复杂调参。

计算成本

较低(单次前向/反向传播)。

较高(需多轮环境交互与策略评估)。

适用场景

任务明确、标注数据充足的场景(如分类、生成)。

复杂决策、动态环境(如游戏、机器人控制)。

四、典型工作流程对比

1.监督微调(SFT)

(1)数据准备:收集标注数据(输入-输出对)。

(2)损失计算:计算模型输出与标签的差异(如交叉熵)。

(3)参数更新:反向传播调整模型参数以最小化损失。

(4)验证收敛:在验证集上评估性能,防止过拟合。

2.强化学习(RL)

(1)策略初始化:通常基于预训练模型或随机策略。

(2)环境交互:生成行为(如文本生成),接收环境反馈(奖励/惩罚)。

(3)奖励计算:根据反馈计算累积奖励(如BLEU分数、人工评分)。

(4)策略优化:通过策略梯度(PPO)或价值函数(DQN)更新模型。

(5)迭代探索:重复交互-评估-更新直至策略收敛。

五、典型结合方式

        在运用过程中,SFT与RL之间也不完全是孤立的,也可能存在一些混合方法。比如,逆强化学习(Inverse RL)试图从专家示范中推断奖励函数,然后应用RL。或者,使用SFT初始化策略,再用RL进行微调,结合两者的优点。例如,在AlphaGo中,首先用监督学习学习人类棋手的策略,然后用RL进行自我对弈来进一步提升。以下列举三种SFT与RL的典型结合方式:

1.SFT→RL两阶段训练

        先用SFT初始化合理策略,再用RL优化生成质量(如ChatGPT的训练流程)。

        优势:结合SFT的稳定性与RL的优化能力。

2.逆强化学习(IRL)

        从SFT提供的专家示范中反推奖励函数,再用RL学习策略。

        应用:模仿学习场景(如自动驾驶行为克隆)。

3.混合目标函数

        联合优化监督损失与RL奖励,如: 

        优势:平衡生成结果的准确性与多样性。

六、选择建议

场景特征

推荐方法

标注数据充足、任务明确

优先选择SFT

需优化长期收益、动态决策

选择RL

标注成本高但可定义奖励函数

使用RL + 少量SFT数据

需生成多样性且可控的内容

SFT + RL混合训练

七、总结

(1)SFT是“确定性优化”,依赖明确标注,适合快速适配明确任务。

(2)RL是“探索性优化”,通过试错学习复杂策略,适合动态环境与长期收益优化。

(3)二者可协同使用,在生成质量、安全性和多样性之间取得平衡。

        SFT和规模RL都是优化模型的方法,但SFT依赖监督数据和最小化误差,而RL依赖奖励信号和最大化累积奖励。两者可以结合使用,在不同阶段或不同任务中发挥各自的优势。

### DeepSeek 使用强化学习替代监督微调 DeepSeek 的训练策略旨在减少传统监督微调阶段,转而采用更高效的强化学习方法来优化模型性能。这种方法不仅能够加速整个训练流程,还能提高最终生成内容的质量。 #### 强化学习框架设计 在 DeepSeek 中,通过构建特定的奖励函数环境设置,使得模型能够在交互过程中不断调整参数以获得更高的回报值。这种方式允许模型直接从环境中获取反馈信号,从而指导其行为决策过程[^1]。 具体来说,在不经过传统的有标注数据集上的迭代更新情况下: - **定义任务目标**:明确希望达到的效果,比如对话系统的连贯性准确性; - **设定即时奖励机制**:对于每次输出给予相应的分数评价; - **长期累积收益最大化原则下进行探索利用之间的平衡操作** 这种基于试错的学习模式让机器可以自主发现最优解法而不依赖于预先准备好的标准答案集合。 #### 实现细节 为了支持上述理念的实际应用,技术层面采取了一系列措施确保方案可行有效: - 利用了类似于 `AutoModelForCausalLM` 这样的高级接口加载基础架构,并对其进行必要的自定义配置以便适应新的训练范式[^2]; ```python from transformers import AutoModelForCausalLM, BitsAndBytesConfig base_model = "your_base_model_name" bnb_config = BitsAndBytesConfig(...) model = AutoModelForCausalLM.from_pretrained( base_model, quantization_config=bnb_config, device_map="auto", ) ``` - 结合 GLM 架构特点引入了混合型注意力机制,既保留了一定程度的历史上下文感知能力又不会造成未来信息泄露问题[^3]: ```python class CustomAttentionLayer(nn.Module): def __init__(self): super().__init__() def forward(self, hidden_states, attention_mask=None): # Implement custom logic here to switch between uni-directional and bi-directional attention based on task requirements. pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搏博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值