OpenAI 近期在直播中,提到了两个新的概念 :
①强化学习微调(Reinforcement Fine-Tuning): 仅需少量高质量数据(数十到数千个),模型即可通过强化学习处理复杂任务。
②偏好微调 (Preference Fine-Tuning, PFT) : 采用直接偏好优化 (例如Direct Preference Optimization, DPO) 算法,通过比较不同的模型输出,让 AI 能够学习并区分 “更好” 的回复,从而在语气、风格、创造性等主观性任务上表现更出色。
在解释这些概念之前,让我们先理解一下:
一、微调(Fine-tuning):
(1)什么是微调?
我们可以将现在使用的大语言模型想象成一座巨大的图书馆,蕴藏着海量知识。
之前大家所熟知的是,提示词工程(Prompt Engineering):在提示词中加入指令,有时也会加入一些示例(few shots)。这种通过演示引导模型完成任务的方法,被称为“少样本学习”(few-shot learning)。
微调,则是在“少样本学习”基础上的进一步提升。具体而言,我们会使用特定领域的数据来训练模型,从而使其在特定领域上表现得更加出色。换言之,微调是对模型进行针对性的“特训”,使其更好地适应特定场景。
与直接使用提示词相比,微调具有以下优势:
-
(在目标领域) 效果更佳: 微调后的模型能输出更高质量的结果。
-
训练数据更多: 如果采用 few-shots 的方法,因为模型的上下文窗口限制,无法放下太多的数据,而且有很多相关研究发现模型在超长 context length 下的表现可能不如短上下文。同时,微调可以使用的数据量是不受限制的。
-
更省 Token: 微调后,提示词可以更短,从而节省 token。
-
回复 速度更快: 更短的提示词意味着更快的回复速度(主要是减少 prefill 时间)。
(2)什么时候该用微调?
微调能让模型在特定应用场景中表现更出色,但需要投入更多时间和精力,还有训歪的风险。因此我们还是应该首先尝试:提示词工程(Prompt Engineering),或者用 prompt 组成一些复杂的工作流。另外函数调用(Function Calling)可能也是一个选项,但效果可能不会太好。
一般来说,以下情况下,可以考虑使用微调:
-
提示词效果不理想: 即使反复调整提示词,模型仍然无法很好地完成任务。
-
需要大量训练数据: 如果有大量特定领域的训练数据,而提示词无法容纳,则微调是更佳选择。
-
需要更快响应和更少 Token: 微调可以帮助缩短提示词,从而提高回复速度并减少 token 消耗。
二、强化学习微调(Reinforcement Fine-Tuning):
强化学习微调只需要少量(数十至数千个)高质量数据,就能使模型通过强化学习处理目标领域的复杂任务。
它的目标是训练模型学会推理过程,而不仅仅是记住答案,从而提高模型的泛化能力和专业水平。
-
少量高质量数据驱动: RFT 的核心优势在于仅需少量高质量数据即可显著提升模型性能,比 SFT 的数据效率要高。
-
强化学习算法: RFT 采用强化学习算法,通过对模型输出的答案进行评分,并强化正确的推理路径,引导模型的学习。
-
提升推理能力: RFT 不仅仅是让模型模仿输入,而是训练模型如何在特定领域进行推理,这使得模型在解决相似问题时,能够更加灵活和准确。它是在训练模型学习如何思考,而不仅仅是记住答案。
-
适用于专业领域: RFT 特别适合于需要专业知识的领域,如法律、金融、工程、保险等,这些领域通常有明确的正确答案,并且需要复杂的推理过程。
-
与 SFT 的区别: 与传统的监督式微调(SFT)不同,RFT 更侧重于训练模型的推理能力,而不是简单地记忆训练数据。 RFT 可以被看作是对 SFT 的一种补充和改进,它将强化学习的优势融入到了模型微调的过程中。
总结来说:RFT 不仅仅是简单的微调,更是一种训练模型思考和推理的方法。 可以将其视为一个“特训班”,通过少量高质量案例和强化学习,让模型成为特定领域的专家,而不仅仅是“复读机”。
(这里可以参考 24 年初的一篇论文:REFT: Reasoning with REinforced Fine-Tuning)
SFT和ReFT在CoT替代方案存在时的比较:
三、偏好微调 (Preference Fine-Tuning, PFT) :
PFT 算是一个一直有的概念,openai 这次又提了一次。常说的 RLHF,DPO(Direct Preference Optimization 直接偏好优化)都属于偏好微调,通过比较不同的模型输出,让 AI 学习并区分哪些是“更好”的回复,从而在语气、风格、创造性等任务上表现更符合人的偏好。OpenAI 在blog 中已经把 PFT等价与 DPO 了,以下我们也聚焦在 DPO 上
-
成对比较学习: PFT 的核心机制是通过比较模型输出的一对回复,让模型学习并区分哪个是更优选的。
-
直接偏好优化 (DPO) 算法: 通过比较成对的回复,直接优化模型以偏向更优选的输出。 避免了复杂的奖励模型训练。
-
训练数据来源多样: PFT 的训练数据可以是人工标注、A/B 测试或合成数据生成的成对回复。
-
适用于主观任务: PFT 特别适用于那些 “更好” 的回复具有主观性的任务,例如:
-
创意写作
-
内容摘要
-
对话风格调整
-
主观评估任务
-
增强模型在风格、语气、创造性等方面的能力: 你可以把 PFT 看作是一个 “品味训练班”,它通过比较模型生成的不同回复,教会模型理解用户和开发者的 “品味”, 从而让模型输出更符合人类期望的,更具创造性和个性化的内容。
与监督式微调 (SFT) 的区别:
简单来说: 这是一种以偏好为导向的微调方法,而非以正确性为导向的微调方法。它采用了 DPO 算法,使其训练过程更加高效。PFT 尤其擅长处理主观性较强的任务,例如需要创造力或需要特定风格的任务。PFT 的训练数据通常包含成对的优选和非优选的回复, 而不是精确的输入输出对。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈