洛谷P4357 K 远点对

传送门

题目描述

已知平面内 NN 个点的坐标,求欧氏距离下的第 KK 远点对。
两个点 P(x_1,y_1)P(x 1 ,y 1​ ) 和 Q(x_2,y_2)Q(x 2​,y 2 ) 的欧氏距离定义为 \sqrt{(x_1-x_2)2+(y_1-y_2)2} (x 1 −x 2 )2+(y 1​ −y 2​ ) 2

输入格式

输入文件第一行为用空格隔开的两个整数 N,KN,K 。
接下来 NN 行,每行两个整数 X,YX,Y ,表示一个点的坐标。

输出格式

输出文件第一行为一个整数,表示第 KK 远点对的距离的平方(一定是个整数)。

输入输出样例

输入 #1复制
10 5
0 0
0 1
1 0
1 1
2 0
2 1
1 2
0 2
3 0
3 1
输出 #1复制
9

说明/提示

对于 100%100% 的测试点,N \le 100000,1 \le K \le 100,K \le \dfrac {N(N-1)}{2},0 \le X,Y < 2^{31}N≤100000,1≤K≤100,K≤
2
N(N−1)

,0≤X,Y<2
31

上代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;
typedef long long ll;
typedef double ddf;
const int N=1000000+10;
const int inf=0x3f3f3f3f;
const ddf A=0.75;
int n,m;
priority_queue<ll,vector<ll>,greater<ll> > q;
inline ll sqr(ll x){return x*x;}
struct pnt{
	int x[2];
}p[N];
int nwd;
bool operator <(pnt a,pnt b){
	return a.x[nwd]<b.x[nwd];
}
struct node{
	int mx[2],mn[2],sz;
	int ls,rs;
	pnt p;
}tr[N];
int cnt,top,bin[N],root;
int newnode(){
	if(top)return bin[top--];
	else return ++cnt;
}
void mat(int rt){
	int ls=tr[rt].ls,rs=tr[rt].rs;
	int k=rt,l=ls,r=rs;
	for(int i=0;i<2;i++){
		tr[rt].mn[i]=tr[rt].mx[i]=tr[rt].p.x[i];
		if(ls){
			tr[rt].mn[i]=min(tr[rt].mn[i],tr[ls].mn[i]);
			tr[rt].mx[i]=max(tr[rt].mx[i],tr[ls].mx[i]);
		}
		if(rs){
			tr[rt].mn[i]=min(tr[rt].mn[i],tr[rs].mn[i]);
			tr[rt].mx[i]=max(tr[rt].mx[i],tr[rs].mx[i]);
		}
	}
	tr[rt].sz=tr[ls].sz+tr[rs].sz+1;
}
int build(int l,int r,int dim){
	if(l>r)return 0;
	int rt=newnode(),mid=(l+r)>>1;
	nwd=dim;
	nth_element(p+l,p+mid,p+r+1);
	tr[rt].p=p[mid];
	tr[rt].ls=build(l,mid-1,dim^1);
	tr[rt].rs=build(mid+1,r,dim^1);
	mat(rt);
	return rt;
}
ll dist(pnt tp,int rt){
	return max(sqr(tr[rt].mx[0]-tp.x[0]),sqr(tr[rt].mn[0]-tp.x[0]))+max(sqr(tr[rt].mx[1]-tp.x[1]),sqr(tr[rt].mn[1]-tp.x[1]));
}
ll dist(pnt a,pnt b){
	return sqr(a.x[0]-b.x[0])+sqr(a.x[1]-b.x[1]);
}
ll ass;
void fuck(int rt,pnt tp){
	ll dl=-inf,dr=-inf;
	if(tr[rt].ls)dl=dist(tp,tr[rt].ls);
	if(tr[rt].rs)dr=dist(tp,tr[rt].rs);
	ll sb=dist(tp,tr[rt].p);
	if(sb>q.top()){
		q.pop();q.push(sb);
	}
	if(dl>dr){
		if(dl>q.top())fuck(tr[rt].ls,tp);
		if(dr>q.top())fuck(tr[rt].rs,tp);
	}
	else{
		if(dr>q.top())fuck(tr[rt].rs,tp);
		if(dl>q.top())fuck(tr[rt].ls,tp);
	}
}
int main(){
	//freopen("b","r",stdin);
//	freopen("a","w",stdout);
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++)scanf("%d%d",&p[i].x[0],&p[i].x[1]);
	root=build(1,n,0);
	int op,x,y,z;
	pnt tp;
	for(int i=1;i<=m*2;i++)q.push(0);
	for(int i=1;i<=n;i++){
		tp=p[i];
		fuck(root,tp);
	}
	printf("%lld\n",q.top());
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值