本博文源于《商务统计》,旨在研究两个独立样本情况下两个总体均值之差的区间估计。
实验起源及引例
很多传言说,男生的数学成绩要比女生的数学成绩要好,如果要用数学的理论如何做阐述呢?
我们假定:男生是一个总体,女生是一个总体。要观测的是他/她们的数学成绩.
如果假定:他们之间数学成绩存在差异,那么差异到底是多少呢?我们两个总体的均值之差刻画他们的差异。如果男生或者女生这个总体太大,也就是人数过多,我们往往抽取一部分人去测试然后推断,这就是样本
实验类型分类
-
第一类:总体方差已知
-
第二类:总体方差未知
- 假定方差相等
- 假定方差不等
类别1:总体方差已知
总体方差已知,我们可以直接套用统计学里的公式,
类似于点估计中区间估计一样,
Z在统计学中就是一个一般统计量,
- X把:样本1均值
- Y把:样本2均值
- σ1^2:总体1的方差
- σ2^2:总体2的方差
- n1:样本1的容量
- n2:杨奔2的容量
类别2:总体方差未知
总体方差未知,但方差相等
- t(α/2)是一个t统计量
- Sp是一个样本方差的算术平均值
- X把和Y把:样本1,2的均值
- n1,n2:样本的容量
为了方便我们用一个例子学会套用一下
例子:工人组装产品
通过题目中会发现,题目已经告诉你方差相等,因此只需要根据公式进行带入,确定各个参数,我们便可计算出真正答案!
题目解决
- 算出样本1的样本均值与方差
- 算出样本2的样本均值与方差
- 计算两样本方差的算术平均值
- 套用公式,完美收官
害怕大家水印看不到具体,第一个水印遮住是n1+n2-2,第二个水印遮住的是两个12
总体方差未知,但方差不等
不等的情况下,t的自由度要经过计算确定,这也是有公式的。
例子:工人组装产品,方差不相等
在解决题目的时候会发现,一切步骤跟方差未知的情况下一样,只不过就是在于求自由度上遇到了难点。
- 求出样本1,2的均值与方差
- 根据公式求出t的自由度
- 带入公式计算,收获喜悦
总结
在学习计算题目的时候,会发现两类,一种是总体方差已经知道的情况下进行计算,另一种总体方差未知的情况下进行计算,实验中往往总体方差未知,总体方差未知的时候,我们可以先运用两个总体方差之间的是否具有差异的F检验,如果两个方差相等那么我们可以运用博文中的S统计量继续计算,如果检验后不等那么就使用t自由度来计算。一句话概括:两个总体方差未知时,先两个总体方差检验,然后再均值之差的检验