PIL,Pillow, opencv, scikit-image,那种最好,scikit-image

图像处理中媲美matlab的python包——scikit-image(skimage)包的用法详解,
PIL,Pillow, opencv, scikit-image等。其中,PIL和Pillow只提供最基础的数字图像处理,功能有限;opencv本质上是一个c++库,只是提供了python的接口,scikit-image是基于scipy的一款图像处理包,它功能非常齐全,同时将图片作为numpy数组进行处理,几乎集合了matlab的所有图像处理功能,在数据的处理方式,函数名字等方面对matlab的模仿姿势非常到位
https://blog.csdn.net/u013044310/article/details/80114689

通过skimage.util.random_noise添加噪
https://blog.csdn.net/weixin_44457013/article/details/88544918

在Python3中安装这些常用库通常通过包管理器pip来进行。首先,你需要打开命令行终端(对于Windows用户是CMD或PowerShell,macOS/Linux用户则是Terminal)。然后,分别运行以下命令: 1. 安装Pillow(用于图像处理): ```bash pip install pillow ``` 2. 安装NumPy(科学计算库): ```bash pip install numpy ``` 3. 安装scikit-image(高级图像处理库): ```bash pip install scikit-image ``` 4. 安装OpenCV(计算机视觉库,需要C++编译器): ```bash pip install opencv-python # 如果是第一次安装,可能会提示缺少必要的C++编译器和库,这时可能需要额外安装OpenCV的python版本(如opencv-python-headless),或者使用conda环境安装(conda install -c conda-forge opencv) # 或者如果是Mac系统,可以尝试以下安装: # brew install libpng libjpeg webp tiff openexr ffmpeg # pip install opencv-python ``` 接下来,你可以使用以下代码示例读取本地图片并显示: ```python from PIL import Image import cv2 import numpy as np from skimage import io # 读取图片(PIL) img_pillow = Image.open('path_to_your_image.jpg') img_pillow.show() # 读取图片(OpenCV) img_opencv = cv2.imread('path_to_your_image.jpg', cv2.IMREAD_COLOR) cv2.imshow('Image', img_opencv) cv2.waitKey(0) # 等待按键关闭窗口 # 读取图片(scikit-image) img_skimage = io.imread('path_to_your_image.jpg') io.imshow(img_skimage) io.show() # 调用skimage的show函数直接显示图片
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值