这篇博客将介绍如何使用Python,OpenCV和Scikit-Image检测低对比度图像。
在良好受控的光照条件下拍摄照片,将更便于处理。
在动态条件下拍摄的照片将更具有个别性,使得不能覆盖所有的场景及边缘案例。
检测低对比度的一个应用是:在应用算法前,过滤掉低对比度的图像,因其往往会导致不够准确的结果。
1. 效果图
非低对比度图像效果图,可以看到最大轮廓正确检测且展示。右侧的边缘图也很清晰,前景与背景较好的区分开。
低对比度图像效果图,可以看到轮廓检测的结果map图,边界框模糊,前景与背景的分界处并没有正确展示。因此在检测时会直接跳过绘制最大边缘:
2. 原理
-
低对比度图像/帧会产生什么问题?怎样才能检测到它们