正交实验与极差分析

文章介绍了正交试验作为多因素试验设计方法,如何通过正交表减少试验次数并进行极差分析以找到最优试验方案。在三因素三水平的案例中,利用SPSSAU工具进行正交设计和数据分析,最终确定最优因素和最佳因素水平组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

正交试验极差分析流程如下图:

  1. 正交试验说明
    正交试验是研究多因素试验的设计方法。对于多因素、多水平的实验要求,如果每个因素的每个水平都要进行试验,这样就会耗费大量的人力和时间,正交试验可以选择出具有代表性的少数试验进行试验,从而找出最优试验方案。
    例如进行一个三因素三水平的试验,按照全面试验的思想,就要进行=27次实验,实验次数多且重复;但是如果选择进行正交试验就只需要做9次试验,大大节省了人力物力和时间,因此正交试验在很多领域都被广泛应用。
  2. 正交表设计

正交试验是通过现成的规格化表——正交表,科学的安排试验并通过极差分析或者方差分析来分析试验结果,找到最优试验方案的。

正交表是正交试验的基本工具,以正交表为例说明下正交表的概念和特点。式中L表示正交表,数字 3 表示因素的水平个数,右上指数为 4,标明最多可安排因素(包括交互)的个数。L右下的 9 表示本正交试验总的试验次数。即如采用该试验,那么可以完成安排最多4 个因素,每个因素最多 3个水平的总共9次的试验。

当前有一份三因素三水平的数据需要进行正交试验,目的是得到最优试验组合。

首先进行正交表的设计。设计正交表,可以使用SPSSAU进行,分析路径【SPSSAU->实验/医学研究->正交试验】。有时候可能会遇到SPSSAU输出的正交表的因素或水平数与预期不一致,是因为SPSSAU系统默认找到最接近的标准正交表,如果不一致,需要进行正交表的改造,例如使用拟水平法、组合法、并列法等。

具体操作可以查看SPSSAU帮助手册进行了解学习。https://spssau.com/helps/medicalmethod/orthogonal.html

本案例使用SPSSAU得到三因素三水平正交设计表如下:

得到正交设计表后,接下来需要按照正交表进行试验。

三、进行试验

从得到正交表可以看出,本次试验共需要进行9次。试验1为使用因子1的1水平、因子2的1水平和因子3的1水平进行试验;试验2为使用因子1的1水平、因子2的2水平和因子3的3水平进行试验,以此类推,分别得到9次试验的分析结果。

本次试验的三个因子分别是A、B、C,三个因子各有三个水平简单记为水平123,得到最终试验结果如下:

得到试验结果之后,对实验数据进行分析,目的是找到试验的最优因素和最优试验组合,即希望找到ABC三个因子中哪一个对综合得分的影响最优,同时找到综合得分最高的因素水平组合。

四、极差分析

对正交试验数据进行分析主要有两种分析方法,分别是极差分析与方差分析。极差分析又称直观分析法,它具有计算简单、直观形象、简单易懂等优点,是正交试验结果分析最常用的方法。本案例使用极差分析法进行分析。

极差分析设计的相关指标机器说明,如下表所示:

使用SPSSAU进行极差分析,操作如下图,需要注意的是,SPSSAU默认情况下试验数据越大越好,如果试验数据越小越好,此时可下拉选择‘试验数据类型’参数为‘越小越好’即可。

极差分析输出两类结果,分别是极差分析表格和因子各水平均值图。接下来进行极差分析结果解读,确定最优因素和最佳因素水平组合。

五、结果解读

结果1:极差分析表格

首先看R值(因素极差值):R值的大小反映了各因素对于试验结果的影响程度大小。所以本次试验结果显示,C因素为最优因素,对试验结果影响最大,其次是A因素,最后是B因素。因而三个因素的优劣排列顺序为因子C>因子A>因子B。

再看最佳水平:最佳水平显示,因子A在水平3的时候最优;因子B在水平2的时候最优;因子3在水平2的时候最优。

综合上述分析,得到这次试验的最优因素是“因子C”,最佳因素水平组合是“因子A的3水平、因子B的2水平、因子C的2水平”。

结果2:因子各水平均值图

因素各水平均值图展示各个因素各个水平的试验数据平均值情况;可通过图形直观查看各水平的试验数据平均值情况并进行对比;并找出最佳水平组合,进行分析汇总。从上图也可以直观看出最佳因素水平组合为“因子A的3水平、因子B的2水平、因子C的2水平”。

六、总结

进行正交试验分析,首先需要进行正交表的设计, SPSSAU默认找到最接近的标准正交表,如果与试验预期不符,可以进行正交表的改造后再使用。然后根据得到的正交表进行试验,记录好试验结果,上传到SPSSAU系统。最后使用极差分析(或方差分析)来分析正交试验结果,得到最优因素和最佳因素水平组合。

极差分析(Range Analysis)是一种用于评估因素对实验结果产生影响程度的方法。它通过计算各因素取值范围的变化程度,来确定各因素对结果的重要性。 在Matlab中,实施极差分析可以按照以下步骤进行: 1. 准备实验数据:将需要评估的不同因素的取值和相应的结果数据录入Matlab。假设有N个因素,每个因素的取值范围为m1、m2、...、mN,对应的结果为r1、r2、...、rN。 2. 计算极差:使用Matlab的range函数来计算每个因素的极差,它将返回一个包含所有极差值的向量。极差表示每个因素取值范围的变化程度。 3. 归一化极差:为了确保每个因素的范围对结果的影响公平比较,可以对极差进行归一化处理。可以使用Matlab的normalize函数将所有极差值缩放到0到1之间的范围内。 4. 计算相对重要性:使用归一化的极差值来计算每个因素的相对重要性。可以根据所需的指标,例如平均相对重要性或加权相对重要性,在Matlab中进行计算。 5. 结果分析:根据计算得到的相对重要性,可以对各因素进行排序,以确定对结果影响最大的因素。可以使用Matlab的sort函数来对相对重要性进行排序,然后根据排序结果进行分析和决策-making。 通过Matlab的极差分析方法,我们可以定量地确定各因素对实验结果的影响程度,从而有针对性地进行优化和改进。它可以帮助我们更好地理解实验数据,提高实验设计和结果分析的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值