正交实验与极差分析

191 篇文章 31 订阅
161 篇文章 21 订阅
文章介绍了正交试验作为多因素试验设计方法,如何通过正交表减少试验次数并进行极差分析以找到最优试验方案。在三因素三水平的案例中,利用SPSSAU工具进行正交设计和数据分析,最终确定最优因素和最佳因素水平组合。
摘要由CSDN通过智能技术生成

正交试验极差分析流程如下图:

  1. 正交试验说明
    正交试验是研究多因素试验的设计方法。对于多因素、多水平的实验要求,如果每个因素的每个水平都要进行试验,这样就会耗费大量的人力和时间,正交试验可以选择出具有代表性的少数试验进行试验,从而找出最优试验方案。
    例如进行一个三因素三水平的试验,按照全面试验的思想,就要进行=27次实验,实验次数多且重复;但是如果选择进行正交试验就只需要做9次试验,大大节省了人力物力和时间,因此正交试验在很多领域都被广泛应用。
  2. 正交表设计

正交试验是通过现成的规格化表——正交表,科学的安排试验并通过极差分析或者方差分析来分析试验结果,找到最优试验方案的。

正交表是正交试验的基本工具,以正交表为例说明下正交表的概念和特点。式中L表示正交表,数字 3 表示因素的水平个数,右上指数为 4,标明最多可安排因素(包括交互)的个数。L右下的 9 表示本正交试验总的试验次数。即如采用该试验,那么可以完成安排最多4 个因素,每个因素最多 3个水平的总共9次的试验。

当前有一份三因素三水平的数据需要进行正交试验,目的是得到最优试验组合。

首先进行正交表的设计。设计正交表,可以使用SPSSAU进行,分析路径【SPSSAU->实验/医学研究->正交试验】。有时候可能会遇到SPSSAU输出的正交表的因素或水平数与预期不一致,是因为SPSSAU系统默认找到最接近的标准正交表,如果不一致,需要进行正交表的改造,例如使用拟水平法、组合法、并列法等。

具体操作可以查看SPSSAU帮助手册进行了解学习。https://spssau.com/helps/medicalmethod/orthogonal.html

本案例使用SPSSAU得到三因素三水平正交设计表如下:

得到正交设计表后,接下来需要按照正交表进行试验。

三、进行试验

从得到正交表可以看出,本次试验共需要进行9次。试验1为使用因子1的1水平、因子2的1水平和因子3的1水平进行试验;试验2为使用因子1的1水平、因子2的2水平和因子3的3水平进行试验,以此类推,分别得到9次试验的分析结果。

本次试验的三个因子分别是A、B、C,三个因子各有三个水平简单记为水平123,得到最终试验结果如下:

得到试验结果之后,对实验数据进行分析,目的是找到试验的最优因素和最优试验组合,即希望找到ABC三个因子中哪一个对综合得分的影响最优,同时找到综合得分最高的因素水平组合。

四、极差分析

对正交试验数据进行分析主要有两种分析方法,分别是极差分析与方差分析。极差分析又称直观分析法,它具有计算简单、直观形象、简单易懂等优点,是正交试验结果分析最常用的方法。本案例使用极差分析法进行分析。

极差分析设计的相关指标机器说明,如下表所示:

使用SPSSAU进行极差分析,操作如下图,需要注意的是,SPSSAU默认情况下试验数据越大越好,如果试验数据越小越好,此时可下拉选择‘试验数据类型’参数为‘越小越好’即可。

极差分析输出两类结果,分别是极差分析表格和因子各水平均值图。接下来进行极差分析结果解读,确定最优因素和最佳因素水平组合。

五、结果解读

结果1:极差分析表格

首先看R值(因素极差值):R值的大小反映了各因素对于试验结果的影响程度大小。所以本次试验结果显示,C因素为最优因素,对试验结果影响最大,其次是A因素,最后是B因素。因而三个因素的优劣排列顺序为因子C>因子A>因子B。

再看最佳水平:最佳水平显示,因子A在水平3的时候最优;因子B在水平2的时候最优;因子3在水平2的时候最优。

综合上述分析,得到这次试验的最优因素是“因子C”,最佳因素水平组合是“因子A的3水平、因子B的2水平、因子C的2水平”。

结果2:因子各水平均值图

因素各水平均值图展示各个因素各个水平的试验数据平均值情况;可通过图形直观查看各水平的试验数据平均值情况并进行对比;并找出最佳水平组合,进行分析汇总。从上图也可以直观看出最佳因素水平组合为“因子A的3水平、因子B的2水平、因子C的2水平”。

六、总结

进行正交试验分析,首先需要进行正交表的设计, SPSSAU默认找到最接近的标准正交表,如果与试验预期不符,可以进行正交表的改造后再使用。然后根据得到的正交表进行试验,记录好试验结果,上传到SPSSAU系统。最后使用极差分析(或方差分析)来分析正交试验结果,得到最优因素和最佳因素水平组合。

### 回答1: 正交实验中的r值指的是因子间的相关系数,用于衡量各个因子之间的相关性强弱程度。由于正交实验的设计目的是研究不同因子对实验结果的影响,因此r值的计算并不是用于极差分析极差分析是一种用于研究同一组数据内部差异的方法,通常用于比较不同处理或实验条件下的差异大小。它主要通过计算数据的极差(最大值减最小值)来判断不同处理或实验条件是否具有显著差异。 与极差分析不同,正交实验的重点在于设计因子的选择以及其对实验结果的影响程度的研究。正交实验设计是根据正交表进行的,通过在各个因子不同水平上进行组合,以实现因子之间的独立性和平等性,从而减少不同因子之间的相互干扰。因此,正交实验的目标是探究各个因子对实验结果的影响,而不是研究极差。 总之,正交实验设计和极差分析是两种不同的方法,用于不同类型的研究。正交实验设计主要用于研究因子对实验结果的影响,而极差分析则用于比较不同处理或实验条件下的差异大小。 ### 回答2: 正交实验r值不能直接用于极差分析,因为正交实验中的r值表示的是变量之间的相关性,而极差分析主要用于比较不同水平下的实验结果的差异性。 正交实验是一种设计实验的方法,通过合理安排试验方案,将所研究的因素进行组合,以控制干扰,减少实验次数,从而得出准确的结论。在正交实验中,不同水平的因素组合形成多个试验点,然后对每个试验点进行实验,得到一组数据。这些数据可以用于分析各因素对实验结果的影响及其交互作用。 而极差分析是用于比较不同水平下的实验结果的差异性的统计方法。它通过计算每个试验点的极差(即最大值与最小值的差)来评估不同因素水平对实验结果的影响。通过对极差进行统计分析,可以判断不同水平下的实验结果是否存在显著差异。 因此,正交实验中的r值通常用于判断不同因素之间的相关性及其交互作用,而不适用于直接进行极差分析。要进行极差分析,需要计算每个试验点的实验结果的极差,并进行统计分析。 ### 回答3: 正交实验中的r值是指各个处理的平均值与总平均值之间的差异,常用来评估各个处理之间的差异程度。在进行正交实验后,我们可以通过计算各处理的平均值以及总平均值,从而计算得到r值。然而,r值本身并不直接可以用于极差分析极差分析是一种用于比较不同处理组或不同实验组之间差异大小的方法,主要通过计算各组最大值与最小值之间的差异来评估差异程度。它可以帮助我们判断不同处理组或实验组之间的差异是否显著。 不论是正交实验还是非正交实验,我们在进行极差分析时都是根据各组的最大值和最小值来计算差异。因此,单纯的r值并不能直接用于进行极差分析。 在进行极差分析时,我们可以根据正交实验所得到的数据计算出每个处理组的极差,然后再进行差异分析。通过计算极差,我们可以判断不同处理组之间的差异是否显著,从而得出结论。 总之,正交实验中的r值可以帮助我们评估各处理的平均值差异,但并不能直接用于进行极差分析。在进行极差分析时,我们需要根据实验数据计算处理组的极差,然后进行差异分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值