如何正确区分方差分析、T检验、卡方检验的使用?

差异研究的目的在于比较两组数据或多组数据之间的差异,通常包括以下几类分析方法,分别是方差分析、T检验和卡方检验。

 

三个方法的区别

  • 其实核心的区别在于:数据类型不一样。如果是定类和定类,此时应该使用卡方分析;如果是定类和定量,此时应该使用方差或者T检验。
  • 方差和T检验的区别在于,对于T检验的X来讲,其只能为2个类别比如男和女。如果X为3个类别比如本科以下,本科,本科以上;此时只能使用方差分析。

 

进一步细分

 

1)方差分析

根据X的不同,方差分析又可以进行细分。X的个数为一个时,我们称之为单因素方差;X为2个时则为双因素方差;X为3个时则称作三因素方差,依次下去。当X超过1个时,统称为多因素方差。

单因素方差分析用于分析定类数据与定量数据之间的关系情况。在使用单因素方差分析时,需要每个选项的样本量大于30,比如男性和女性样本量分别是100和120,如果出现某个选项样本量过少时应该首先进行组别合并处理,比如研究不同年龄组样本对于研究变量的差异性态度时,年龄小于20岁的样本量仅为20个,那么需要将小于20岁的选项与另外一组(比如20~25岁)的组别合并为一组,然后再进行单因素方差分析。

如果选项无法进行合并处理,比如研究不同专业样本对于变量的态度差异,研究样本的专业共分为市场营销、心理学、教育学和管理学四个专业,这四个专业之间为彼此独立无法进行合并组别,但是市场营销专业样本量仅为20并没有代表意义,因此可以考虑首先筛选出市场营销专业,即仅比较心理学,教育学和管理学这三个专业对某变量的差异性态度,当对比的组别超过三个,并且呈现出显著性差异时,可以考虑使用事后检验进一步对比具体两两组别间的差异情况。

SPSSAU分析界面-单因素方差分析

 

双因素方差分析用于分析定类数据(2个)与定量数据之间的关系情况,例如研究人员性别,学历对于网购满意度的差异性;以及男性或者女性时,不同学历是否有着网购满意度差异性;或者同一学历时,不同性别是否有着网购满意度差异性。

SPSSAU分析界面-双因素方差分析

 

多因素方差分析通常用于类实验式问卷研究。比如研究者测试某新药对于胆固醇水平是否有疗效;研究者共招募72名被试,男女分别为36名,以及男女分别再细分使用新药和普通药物;同时高血压患者对于新药可能有干扰,因而研究者将被试是否患高血压也纳入考虑范畴中。因而最终,X共分为三个,分别是药物(旧药和新药)、性别,是否患高血压;Y为胆固醇水平。因而需要进行三因素方差分析即多因素方差分析。

 

SPSSAU分析界面-多因素方差分析

 

在方法选择上,问卷研究通常会使用方差分析,但某些专业,比如心理学、教育学或者师范类专业等涉及到实验研究时,更多会使用T检验进行分析,另外方差分析与T检验还有较多差异,在某些分析中只能使用其中一种。

 

2)T检验

T检验共分为三种方法,分别是独立样本T检验,配对样本T检验和单样本T检验。

独立样本T检验和单因素方差分析功能上基本一致,但是独立样本T检验只能比较两组选项的差异,比如男性和女性。相对来讲,独立样本T检验在实验比较时使用频率更高,尤其是生物、医学相关领域。针对问卷研究,如果比较的类别为两组,独立样本T检验和单因素方差分析均可实现,研究者自行选择使用即可。

 

SPSSAU分析界面-t检验

 

独立样本T检验和配对样本T检验功能上都是比较差异,而且均是比较两个组别差异。但二者有着实质性区别,如果是比较不同性别,婚姻状况(已婚和未婚)样本对某变量的差异时,应该使用独立样本T检验。如果比较组别之间有配对关系时,只能使用配对样本T检验,配对关系是指类似实验组和对照组的这类关系。另外独立样本T检验两组样本个数可以不相等,而配对样本T检验的两组样本量需要完全相等。

SPSSAU分析界面-配对t检验

 

T检验的第三种分析方法为单样本T检验。比如问卷某题项选项表示为1分代表非常不满意,2分代表比较不满意,3分代表一般,4分代表比较满意,5分代表非常满意,当想分析样本对此题项的态度是否有明显的倾向,比如明显高于3分或者明显低于3分时,即可以使用单样本T检验。单样本T检验是比较某个题项的平均得分是否与某数字(例子是与3进行对比)有着明显的差异,如果呈现出显著性差异,即说明明显该题项平均打分明显不等于3分。此分析方法在问卷研究中较少使用,平均得分是否明显不为3分可以很直观的看出,而不需要单独进行检验分析。

 

 

3)卡方分析

卡方检验用于分析定类数据与定类数据之间的关系情况。例如研究人员想知道两组学生对于手机品牌的偏好差异情况,则应该使用卡方分析。卡方是通过分析不同类别数据的相对选择频数和占比情况,进而进行差异判断,单选题或多选题均可以使用卡方分析进行对比差异分析。

 

相关资料

本文章中涉及的所有分析方法介绍可在SPSSAU中进行学习和使用,包括案例数据下载、具体案例说明和理论。

卡方检验(Chi-square test)、方差分析(Analysis of Variance,ANOVA)和t检验(Student's t-test)是统计学中常用的假设检验方法,用于确定一个或多个样本的均值或比例是否有显著差异。它们的区别如下: 1. 适用范围不同 t检验主要用于比较两个样本的均值是否有显著差异,例如比较两种治疗方法的效果。而方差分析则可以比较多个样本之间的均值是否有显著差异,例如比较三种不同品牌的产品的平均销售额是否有显著差异卡方检验则用于比较不同分类变量之间是否存在显著关联,例如比较吸烟和肺癌之间的关联。 2. 检验的假设不同 t检验方差分析都是用于检验样本均值是否有显著差异,其假设检验都基于总体均值的差异。而卡方检验则是用于检验两个分类变量之间是否存在显著关联,其假设检验基于两个变量的频数分布是否独立。 3. 统计量不同 t检验的统计量是样本均值的差异,而方差分析则是F统计量,用于比较组内方差与组间方差的比值是否显著。卡方检验的统计量则是卡方值,表示观察频数与期望频数的差异程度。 4. 数据类型不同 t检验方差分析通常用于连续变量,而卡方检验则用于分类变量。 总之,这三种方法的应用范围、假设检验、统计量和数据类型都不同,需要根据具体问题的特点选择适当的方法进行分析。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值