【Pytorch深度学习实战】(6)递归神经网络(RNN)

 🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎

📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃

🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​

📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】

 🖍foreword

✔说明⇢本人讲解主要包括Python、机器学习(ML)、深度学习(DL)、自然语言处理(NLP)等内容。

如果你对这个系列感兴趣的话,可以关注订阅哟👋

循环神经网(Recurrent Neural Network,RNN)

RNN,循环神经网络,也有人将它翻译为递归神经网络。从这个名字就可以想到,它的结构中存在着“环”。

确实,RNN 和 NN/DNN 的数据单一方向传递不同。RNN 的神经元接受的输入除了“前辈”的输出,还有自身的状态信息,其状态信息在网络中循环传递。

RNN 的结构用图形勾画出来,是下图这样的:

图 1

注意:图中的 AA 并不是一个神经元,而是一个神经网络块,可以简单理解为神经网络的一个隐层。

RNN 的这种结构,使得它很适合应用于序列数据的处理,比如文本、语音、视频等。这类数据的样本间存在顺序关系(往往是时序关系),每个样本和它之前的样本存在关联。

RNN 把所处理的数据序列视作时间序列,在每一个时刻 tt,每个 RNN 的神经元接受两个输入:当前时刻的输入样本 xtxt,和上一时刻自身的输出 ht-1 。

t 时刻的输出:

图1经过进一步简化,将隐层的自连接重叠,就成了下图:

图2

上图展示的是最简单的 RNN 结构,此外 RNN 还存在着很多变种,比如双向 RNN(Bidirectional RNN),深度双向 RNN(Deep Bidirectional RNN)等。

RNN 的作用最早体现在手写识别上,后来在语音和文本处理中也做出了巨大的贡献,近年来也不乏将其应用于图像处理的尝试。

长短时记忆(Long Short Term Memory,LSTM)

LSTM 可以被简单理解为是一种神经元更加复杂的 RNN,处理时间序列中当间隔和延迟较长时,LSTM 通常比 RNN 效果好。

相较于构造简单的 RNN 神经元,LSTM 的神经元要复杂得多,每个神经元接受的输入除了当前时刻样本输入,上一个时刻的输出,还有一个元胞状态(Cell State),LSTM 神经元结构请参见下图:

LSTM 神经元中有三个门。

遗忘门(Forget Gate):接受xt 和 0ht-1 为输入,输出一个0到11之间的值,用于决定在多大程度上保留上一个时刻的元胞状态ct-1。1表示全保留,0表示全放弃。

输入门(Input Gate): 用于决定将哪些信息存储在这个时刻的元胞状态 ct ct 中。

输出门(Output Gate):用于决定输出哪些信息。

 递归神经网络Pytorch的实现


 
 
  1. import torch
  2. import torch.nn as nn
  3. import torchvision
  4. import torchvision.transforms as transforms
  5. # 设备配置
  6. device = torch.device( 'cuda' if torch.cuda. is_available() else 'cpu')
  7. # 超参数
  8. sequence_ length = 28
  9. input_ size = 28
  10. hidden_ size = 128
  11. num_layers = 2
  12. num_classes = 10
  13. batch_ size = 100
  14. num_epochs = 2
  15. learning_rate = 0.01
  16. # MNIST 数据集
  17. train_dataset = torchvision.datasets.MNIST(root = '../../data/',
  18. train = True,
  19. transform =transforms.ToTensor(),
  20. download = True)
  21. test_dataset = torchvision.datasets.MNIST(root = '../../data/',
  22. train = False,
  23. transform =transforms.ToTensor())
  24. # 数据加载器
  25. train_loader = torch.utils. data.DataLoader(dataset =train_dataset,
  26. batch_ size =batch_ size,
  27. shuffle = True)
  28. test_loader = torch.utils. data.DataLoader(dataset = test_dataset,
  29. batch_ size =batch_ size,
  30. shuffle = False)
  31. # 循环神经网络(多对一)
  32. class RNN(nn.Module):
  33. def __init__( self, input_ size, hidden_ size, num_layers, num_classes):
  34. super(RNN, self).__init__()
  35. self.hidden_ size = hidden_ size
  36. self.num_layers = num_layers
  37. self.lstm = nn.LSTM( input_ size, hidden_ size, num_layers, batch_ first = True)
  38. self.fc = nn.Linear(hidden_ size, num_classes)
  39. def forward( self, x):
  40. # 设置初始隐藏和单元格状态
  41. h 0 = torch. zeros( self.num_layers, x. size( 0), self.hidden_ size). to(device)
  42. c 0 = torch. zeros( self.num_layers, x. size( 0), self.hidden_ size). to(device)
  43. # 前向传播 LSTM
  44. out, _ = self.lstm(x, (h 0, c 0)) # out: tensor of shape (batch_ size, seq_ length, hidden_ size)
  45. # 解码上一个时间步的隐藏状态
  46. out = self.fc(out[:, - 1, :])
  47. return out
  48. model = RNN( input_ size, hidden_ size, num_layers, num_classes). to(device)
  49. # 损失和优化器
  50. criterion = nn.CrossEntropyLoss()
  51. optimizer = torch.optim.Adam(model.parameters(), lr =learning_rate)
  52. # 训练模型
  53. total_step = len(train_loader)
  54. for epoch in range(num_epochs):
  55. for i, (images, labels) in enumerate(train_loader):
  56. images = images.reshape(- 1, sequence_ length, input_ size). to(device)
  57. labels = labels. to(device)
  58. # 前向传播
  59. outputs = model(images)
  60. loss = criterion(outputs, labels)
  61. # 向后和优化
  62. optimizer. zero_grad()
  63. loss.backward()
  64. optimizer.step()
  65. if (i + 1) % 100 = = 0:
  66. print ( 'Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
  67. . format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
  68. # 测试模型
  69. model.eval()
  70. with torch. no_grad():
  71. correct = 0
  72. total = 0
  73. for images, labels in test_loader:
  74. images = images.reshape(- 1, sequence_ length, input_ size). to(device)
  75. labels = labels. to(device)
  76. outputs = model(images)
  77. _, predicted = torch.max(outputs. data, 1)
  78. total + = labels. size( 0)
  79. correct + = (predicted = = labels). sum().item()
  80. print( 'Test Accuracy of the model on the 10000 test images: {} %'. format( 100 * correct / total))
  81. # 模型保存
  82. torch.save(model.state_dict(), 'model.ckpt')

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值