Unet改进2:在不同位置添加CBAM注意力机制

本文内容:在不同位置添加CBAM注意力机制

目录

论文简介

1.步骤一

2.步骤二

3.步骤三

4.步骤四


论文简介

摘要。我们提出了卷积块注意模块(CBAM),这是一种简单而有效的前馈卷积神经网络注意模块。给定一个中间特征映射,我们的模块沿着两个独立的维度依次推断注意力映射,通道和空间,然后将注意力映射乘以输入特征映射以进行自适应特征细化。因为CBAM是一个轻量级的通用模块,它可以无缝地集成到任何CNN架构中,开销可以忽略不计,并且可以与基础CNN一起进行端到端训练。我们通过在ImageNet-1K、MS COCO检测和VOC 2007检测数据集上进行大量实验来验证我们的CBAM。

我们的实验表明,各种模型在分类和检测性能上都有一致的提高,证明了CBAM的广泛适用性。代码和模型将是公开的。

1.步骤一

新建blocks/CBAM.py文件,添加如下代码:


                
### CBAM注意力机制简介 CBAM(Convolutional Block Attention Module)是由Sanghyun Woo等人提出的,旨在通过引入通道注意力和空间注意力来提升卷积神经网络(CNN)的性能[^2]。 ### 原理详解 #### 通道注意力(Channel Attention) 通道注意力模块主要负责捕捉不同通道之间的依赖关系。该过程分为两步: 1. **特征聚合**:分别计算输入特征图的最大池化结果和平均池化结果。 2. **多层感知器处理**:将上述两种池化的结果送入一个多层感知器(MLP),其中包含两个全连接层,最终得到各个通道的重要性权重。这些权重视作一种软选择机制,用来重新调整原始特征图中的每一个通道响应[^4]。 ```python class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=8): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) # shared MLP self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) ``` #### 空间注意力(Spatial Attention) 空间注意力则专注于建模像素级别的关联性。同样地,此操作也包含了两个阶段: 1. **跨维度融合**:沿通道轴对最大池化与均值池化后的特征映射执行按位最大/最小运算,以此获得描述整个感受野内重要性的二维矩阵。 2. **卷积滤波**:利用7×7大小的卷积核对该二阶统计量实施变换,进而生成对应的空间注意系数[^3]。 ```python class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) ``` 最后,将两者串联起来形成完整的CBAM结构,并将其应用于任何中间层之后作为附加组件以增强原有架构的表现力。 ```python class CBAM(nn.Module): def __init__(self, gate_channels, reduction_ratio=16, no_spatial=False): super(CBAM, self).__init__() self.ChannelGate = ChannelAttention(gate_channels, reduction_ratio) self.no_spatial=no_spatial if not no_spatial: self.SpatialGate = SpatialAttention() def forward(self, x): x_out = self.ChannelGate(x) x_out = x * x_out if not self.no_spatial: x_out = self.SpatialGate(x_out) x_out = x * x_out return x_out ``` ### 应用场景 在计算机视觉领域中,特别是在目标检测任务里像YOLO这样的算法框架下集成CBAM可以显著提高对于特定物体识别精度以及鲁棒性。这是因为CBAM能够帮助模型更好地聚焦于感兴趣区域的同时抑制背景噪声干扰[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICurator

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值