[环境配置] Python tensorflow CUDA cuDNN版本对照表

对照表来自官网

版本对照表

使用场景

1.有了工程代码,其中制定了python版本,需要从零开始安装tensorflow-gpu,此时建议以

Python -- tensorflow -- CUDA -- cuDNN 的版本依赖顺序进行安装

2.跑通了一份代码,但是手欠把 tensorflow莫名升级了,不知道该安装哪个版本的tf

注意和CUDA的版本对应,比如我用的 CUDA 是10.0,所以必须要用 1.13 以上版本的 tensorflow。

这里要清楚你的CUDA版本并非是由你决定的,是由你的显卡决定的,通过

桌面右键 - NVIDIA控制面板 - 帮助 - 系统信息 - 组件 - 3D设置

 可见CUDA版本,如下图。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值