[文献提炼] 车联网中资源分配的问题建模 又三篇

本文综述了三篇关于UUDNV2XRL的论文,涉及URLLC、V2I、V2V通信的资源分配问题,通过深强化学习解决蜂窝网络和车联网的功率、信道分配与调度,确保高可靠低时延通信。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

摘录和分析看过的论文中 SYSTEM MODEL / PROBLEM FORMULATION 的部分,关注论文的关键词为 UUDN V2X RL。

本文为第二期,第一期链接:https://blog.csdn.net/m0_37495408/article/details/107546431

Model-Free Ultra Reliable Low Latency Communication (URLLC): a Deep Reinforcement Learning Framework

这是一个2019年来自ICC的文章

链路的表示:考虑单一基站覆盖下的场景,其中存在N个用户和K个可用的RB。每个用户有其独立的速率、可靠性、延迟需求。本文不对包到达及包长度做任何假设。

下行传输速率为:

\LARGE r_{i}(t)=\sum_{j=1}^{K} \rho_{i j}(t) B \log _{2}\left(1+\frac{p_{i j}(t) h_{i j}(t)}{\sigma^{2}}\right)

其中B为带宽,h为时变的 V2I 瑞丽衰落信道增益,p 为下行传输功率,\LARGE \rho 为RB分配。

可靠性表示:可靠性 \LARGE \gamma_i(t) 定义其为时延超过预定义阈值 \LARGE D_i^{max} 的概率,时延分成传输时延和排队时延两部分。

传输速率约束于包尺寸、包到达率、可靠性:\LARGE r_{i}(t)>\phi\left(\lambda_{i}(t), \beta(t), \gamma_{i}, D_{i}^{\max }\right)>\lambda_{i}(t) \beta_{i}(t)

其中 \LARGE \beta 是包尺寸、\LARGE \lambda 是包的平均到达速率、\LARGE \phi 表征传输速率和速率、包到达率、可靠性的一个映射(函数)。

目标是在保证可靠性、延迟、速率的前提下最小化BS的平均下行功率:

 约束于

  • 3b:用包延迟描述的可靠性约束(D_i是i号用户的包延迟)
  • 3c、3d:可行性条件

整个资源分配分两个步骤:1.根据可靠性决定每个用户的传输速率;2.分配功率和RB到每个用户。

根据排队论可得3b中的可靠性为:\LARGE \gamma_{i}(t)=1-\operatorname{Pr}\left\{D_{i}>D_{i}^{\max }\right\} \approx 1-\frac{\mu_{i}^{\prime}(t)}{\mu_{i}(t)}\LARGE \mu'是用户i 在slot内延迟超限的包的数量,\LARGE \mu是用户在slot内传输的包的总数量。当\mu增大,上式将近似收敛于 (3b) 中的可靠性。

 Learn to Compress CSI and Allocate Resources in Vehicular Networks

2020年来自 IEEE TRANSACTIONS ON COMMUNICATIONS 的文章

 链路表示:考虑一个有N个蜂窝用户、K对D2D链路、单一BS覆盖下的车联网,D2D交换安全信息,蜂窝用户使用V2I来支持大流量的应用。为保证蜂窝用户的QoS,假设V2I使用正交的频谱资源,并且其上行传输时仅占用一个信道。V2V与V2I分享频谱。

V2I的SINR的表示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值