[文献提炼] 车联网中资源分配的问题建模 三篇

前言

摘录和分析看过的论文中 SYSTEM MODEL / PROBLEM FORMULATION 的部分,关注论文的关键词为 UUDN V2X RL。

Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning

本文是19年使用RL解决V2X资源分配问题的经典开源论文

 链路的表示:考虑蜂窝车联网如上,在单一基站覆盖下存在 M 个 V2I 和 K 个 V2V,传输高数据率的娱乐数据和高可靠性的周期性安全数据,来自 3GPP Release 15 for cellular V2X enhancement [4]。V2I 用 Uu 接口,V2V用 PC5 接口进行 D2D 通信。假设均为单天线。V2I链路集记作记作 \mathcal{M}={1, ..., M},V2V链路的集合记作 \mathcal{K}= {1, ..., K}。

[4] Technical Specification Group Radio Access Network; Study enhance- ment 3GPP Support for 5G V2X Services; (Release 15), document 3GPP TR 22.886 V15.1.0, 3rd Generation Partnership Project, Mar. 2017.

V2V与V2V在资源分配中的关系:使用蜂窝V2X架构下的 Mode 4,车辆共享资源池以同时进行V2V通信,该资源池与V2I的重叠。假设M个V2I(上行)以固定的功率各占用一个正交的频谱子带。

使用OFDM,假设信道衰落在一个频谱子带内大致相同,不同子带间相互独立。在一个相干时段内,k 号V2V链路 在 m号子带上的增益为:g_k[m] = \alpha_kh_k[m]h为频率相关的小尺度衰落成分(假设其服从单位均值的指数分布),\alpha 为大尺度衰落成分(包括路损和阴影)

  • k‘ 号 V2V 对 k 号 V2V 的干扰为(在 m 号子带上):g_{k',k}[m] 
  • k 号 V2V 对 BS 的干扰为(在 m 号子带上):g_{k,B}[m] 
  • m 号 V2I 对 BS 的干扰为(在 m 号子带上):\hat{g}_{m, B}[m] 
  • m 号 V2I 对 k 号 V2V 的干扰为(在 m 号子带上):\hat{g}_{m,k}[m] 

以上参量如何得到? 

首先要提到这部分的计算过程在代码中 Environment_marl.py - Compute_Performance_Reward_Train 方法里,是用发射功率、大尺小尺算出来的,计算上述参量的时候

  • 已知 V2V链路 (或者说V) 的发射功率 (由动作决定)、V2I损耗(包含大尺小尺和快衰) -> 可算 V2I 受到的干扰
  • 已知 V2I发射功率(据前规定,是定值)、V2I损耗(包含大尺小尺和快衰) -> 可算 V2I 的信号功率
  • 已知 V2V发射功率(由动作决定) 、V2V损耗(包含大尺小尺和快衰) -> 可算 V2V 的信号功率
  • 已知V2I发射功率、V2V发射功率、V2V损耗(包含大尺小尺和快衰)、V2I损耗(包含大尺小尺和快衰)  -> 可算V2V受到的干扰

SINR的表示

m号V2I (在m号子带上)的SINR为 \gamma_{m}^{c}[m]=\frac{P_{m}^{c} \hat{g}_{m, B}[m]}{\sigma^{2}+\sum_{k} \rho_{k}[m] P_{k}^{d}[m] g_{k, B}[m]}

k号V2V(在m号子带上)的SINR为 \gamma_{k}^{d}[m]=\frac{P_{k}^{d}[m] g_{k}[m]}{\sigma^{2}+I_{k}[m]}

其中 P_m^c 和 P_k^d[m] 分别是 m号V2I发射端 和 k 号V2V发射端 的发射功率,\sigma^2 表示噪声功率,I 为干扰功率,如下:I_{k}[m]=P_{m}^{c} \hat{g}_{m, k}[m]+\sum_{k^{\prime} \neq k} \rho_{k^{\prime}}[m] P_{k^{\prime}}^{d}[m] g_{k^{\prime}, k}[m]

用户连接的表示:干扰中的 \rho_k[m] 表示 k号V2V对m号子带的占用情况,假设单个V2V进展用一个子带,因此 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值