问题描述:
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace ‘h’ with ‘r’)
rorse -> rose (remove ‘r’)
rose -> ros (remove ‘e’)
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove ‘t’)
inention -> enention (replace ‘i’ with ‘e’)
enention -> exention (replace ‘n’ with ‘x’)
exention -> exection (replace ‘n’ with ‘c’)
exection -> execution (insert ‘u’)
题源:here;完整实现:here
思路:
编辑距离,这是一个很经典的问题,这里有个很好的介绍(here)。至于编程的话,最重要的是转移方程:
实现如下:
class Solution {
public:
int minDistance(string word1, string word2) {
if (!word1.size() || !word2.size()) return word1.size() ? word1.size() : word2.size();
vector<vector<int>> dp(word1.size()+1, vector<int>(word2.size()+1));
dp[0][0] = word1[0] == word2[0] ? 0 : 1;
for (int i = 0; i <= word1.size(); i++)
dp[i][0] = i;
for (int i = 1; i <= word2.size(); i++)
dp[0][i] = i;
for (int i = 1; i <= word1.size(); i++){
for (int j = 1; j <= word2.size(); j++){
if (word1[i-1] == word2[j-1]) dp[i][j] = dp[i - 1][j - 1];
else{
vector<int> choices = { dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1] };
dp[i][j] = 1 + *min_element(choices.begin(), choices.end());
}
}
}
return dp[word1.size() - 1][word2.size() - 1];
}
};