看一下反函数求导数得例题:
解:
y
′
=
d
y
d
x
=
2
e
4
x
2
y' = \frac{dy}{dx} = 2 e ^{4x^2}
y′=dxdy=2e4x2
ϕ ′ ( x ) = d x d y = 1 y ′ = 1 2 e 4 x 2 \phi'(x) = \frac{dx}{dy} = \frac{1}{y'} = \frac{1}{2 e ^{4x^2}} ϕ′(x)=dydx=y′1=2e4x21
ϕ ′ ′ ( x ) = d ( d x d y ) d y = d ( d x d y ) d x d x d y = − 2 e 4 x 2 8 x 4 e 8 x 2 1 2 e 4 x 2 = − 2 x e 8 x 2 \phi''(x) = \frac{ d(\frac{dx}{dy})}{dy} = \frac{ d(\frac{dx}{dy})}{dx} \frac{dx}{dy} = \\ \\ -\frac{2e^{4x^2} 8x}{4 e ^{8x^2}} \frac{1}{2 e ^{4x^2}} = -\frac{2x}{e^{8x^2}} ϕ′′(x)=dyd(dydx)=dxd(dydx)dydx=−4e8x22e4x28x2e4x21=−e8x22x
又因为 x = ϕ ( 1 ) = 1 2 x = \phi (1) = \frac{1}{2} x=ϕ(1)=21,带入上式得: ϕ ′ ′ ( 1 ) = − 1 e 2 \phi''(1) = - \frac {1}{e^2} ϕ′′(1)=−e21