反函数求导数

看一下反函数求导数得例题:
反函数求导

解:
y ′ = d y d x = 2 e 4 x 2 y' = \frac{dy}{dx} = 2 e ^{4x^2} y=dxdy=2e4x2

ϕ ′ ( x ) = d x d y = 1 y ′ = 1 2 e 4 x 2 \phi'(x) = \frac{dx}{dy} = \frac{1}{y'} = \frac{1}{2 e ^{4x^2}} ϕ(x)=dydx=y1=2e4x21

ϕ ′ ′ ( x ) = d ( d x d y ) d y = d ( d x d y ) d x d x d y = − 2 e 4 x 2 8 x 4 e 8 x 2 1 2 e 4 x 2 = − 2 x e 8 x 2 \phi''(x) = \frac{ d(\frac{dx}{dy})}{dy} = \frac{ d(\frac{dx}{dy})}{dx} \frac{dx}{dy} = \\ \\ -\frac{2e^{4x^2} 8x}{4 e ^{8x^2}} \frac{1}{2 e ^{4x^2}} = -\frac{2x}{e^{8x^2}} ϕ′′(x)=dyd(dydx)=dxd(dydx)dydx=4e8x22e4x28x2e4x21=e8x22x

又因为 x = ϕ ( 1 ) = 1 2 x = \phi (1) = \frac{1}{2} x=ϕ(1)=21,带入上式得: ϕ ′ ′ ( 1 ) = − 1 e 2 \phi''(1) = - \frac {1}{e^2} ϕ′′(1)=e21

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值