在本节中,我们应用 6.1 节的思想来找到所谓反三角函数的导数。在这个任务中,我们遇到了一些困难:由于三角函数不是一对一的,它们没有反函数。这个困难通过限制这些函数的定义域,使其成为一对一的函数,从而得到解决。
从图 1 可以看到,正弦函数 y = sin x y = \sin x y=sinx 不是一对一的函数(使用水平线测试)。但是函数 f ( x ) = sin x f(x) = \sin x f(x)=sinx 在 − π 2 ≤ x ≤ π 2 -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} −2π≤x≤2π 内是一对一的(见图 2)。这个限制正弦函数 f f f 的反函数存在,并且记作 sin − 1 \sin^{-1} sin−1 或者 arcsin \arcsin arcsin。它被称为反正弦函数或反正弦函数。
由于反函数的定义为:
f − 1 ( x ) = y ⟺ f ( y ) = x f^{-1}(x) = y \iff f(y) = x f−1(x)=y⟺f(y)=x
因此我们有:
1 sin − 1 x = y ⟺ sin y = x and − π 2 ≤ y ≤ π 2 \sin^{-1}x = y \iff \sin y = x \quad \text{and} \quad -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} sin−1x=y⟺siny=xand−2π≤y≤2π
因此,如果 − 1 ≤ x ≤ 1 -1 \leq x \leq 1 −1≤x≤1,那么 sin − 1 x \sin^{-1}x sin−1x 是介于 − π 2 -\frac{\pi}{2} −2π 和 π 2 \frac{\pi}{2} 2π 之间,使得其正弦值为 x x x 的数。
例1 计算: (a) sin − 1 ( 1 2 ) \sin^{-1}\left(\frac{1}{2}\right) sin−1(21) 和 (b) tan ( arcsin 1 3 ) \tan(\arcsin \frac{1}{3}) tan(arcsin31)。
解
(a) 我们有:
sin − 1 ( 1 2 ) = π 6 \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} sin−1(21)=6π
因为 sin ( π 6 ) = 1 2 \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} sin(6π)=21 并且 π 6 \frac{\pi}{6} 6π 位于 − π 2 -\frac{\pi}{2} −2π 和 π 2 \frac{\pi}{2} 2π 之间。
(b) 设 θ = arcsin 1 3 \theta = \arcsin \frac{1}{3} θ=arcsin31,因此 sin θ = 1 3 \sin \theta = \frac{1}{3} sinθ=31。我们可以画出一个夹角为 θ \theta θ 的直角三角形(见图 3),并根据勾股定理得出第三条边的长度为:
9 − 1 = 2 2 \sqrt{9 - 1} = 2\sqrt{2} 9−1=22
这使得我们可以从三角形中得出:
tan ( arcsin 1 3 ) = tan θ = 1 2 2 \tan(\arcsin \frac{1}{3}) = \tan \theta = \frac{1}{2\sqrt{2}} tan(arcsin31)=tanθ=221
反函数的消去方程在此情况下变为:
2 sin − 1 ( sin x ) = x for − π 2 ≤ x ≤ π 2 sin ( sin − 1 x ) = x for − 1 ≤ x ≤ 1 \begin{align*} \sin^{-1}(\sin x) &= x \quad \text{for} \quad -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\\ \sin(\sin^{-1}x) &= x \quad \text{for} \quad -1 \leq x \leq 1 \end{align*} sin−1(sinx)sin(sin−1x)=xfor−2π≤x≤2π=xfor−1≤x≤1
反正弦函数 sin − 1 \sin^{-1} sin−1 的定义域是 [ − 1 , 1 ] [-1, 1] [−1,1],值域是 [ − π 2 , π 2 ] [-\frac{\pi}{2}, \frac{\pi}{2}] [−2π,2π]。其图像如图 4 所示,可以通过反射线 y = x y = x y=x 从限制正弦函数的图像(见图 2)得到。
我们知道正弦函数 f f f 是连续的,因此反正弦函数也是连续的。我们也知道正弦函数是可微的,因此反正弦函数也是可微的。我们可以通过定理 6.1.7 的公式来计算 sin − 1 \sin^{-1} sin−1 的导数,但因为我们知道 sin − 1 \sin^{-1} sin−1 是可微的,我们也可以通过隐式求导计算它,如下所示。
令 y = sin − 1 x y = \sin^{-1}x y=sin−1x,因此 sin y = x \sin y = x siny=x 并且 − π 2 ≤ y ≤ π 2 -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} −2π≤y≤2π。对 sin y = x \sin y = x siny=x 关于 x x x 隐式求导,得到:
cos y d y d x = 1 d y d x = 1 cos y \begin{align*} \cos y \frac{dy}{dx} &= 1\\ \frac{dy}{dx} &= \frac{1}{\cos y} \end{align*} cosydxdydxdy=1=cosy1
由于 cos y ≥ 0 \cos y \geq 0 cosy≥0,且 − π 2 ≤ y ≤ π 2 -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} −2π≤y≤2π,所以:
cos y = 1 − sin 2 y = 1 − x 2 \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2} cosy=1−sin2y=1−x2
因此:
d y d x = 1 cos y = 1 1 − x 2 \frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}} dxdy=cosy1=1−x21
3 d d x ( sin − 1 x ) = 1 1 − x 2 − 1 < x < 1 \frac{d}{dx} (\sin^{-1}x) = \frac{1}{\sqrt{1 - x^2}} \quad -1 < x < 1 dxd(sin−1x)=1−x21−1<x<1
例2 如果 f ( x ) = sin − 1 ( x 2 − 1 ) f(x) = \sin^{-1}(x^2 - 1) f(x)</