微积分-反函数6.6(反三角函数)

在本节中,我们应用 6.1 节的思想来找到所谓反三角函数的导数。在这个任务中,我们遇到了一些困难:由于三角函数不是一对一的,它们没有反函数。这个困难通过限制这些函数的定义域,使其成为一对一的函数,从而得到解决。

从图 1 可以看到,正弦函数 y = sin ⁡ x y = \sin x y=sinx 不是一对一的函数(使用水平线测试)。但是函数 f ( x ) = sin ⁡ x f(x) = \sin x f(x)=sinx − π 2 ≤ x ≤ π 2 -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} 2πx2π 内是一对一的(见图 2)。这个限制正弦函数 f f f 的反函数存在,并且记作 sin ⁡ − 1 \sin^{-1} sin1 或者 arcsin ⁡ \arcsin arcsin。它被称为反正弦函数反正弦函数

在这里插入图片描述

由于反函数的定义为:

f − 1 ( x ) = y    ⟺    f ( y ) = x f^{-1}(x) = y \iff f(y) = x f1(x)=yf(y)=x

因此我们有:

1 sin ⁡ − 1 x = y    ⟺    sin ⁡ y = x and − π 2 ≤ y ≤ π 2 \sin^{-1}x = y \iff \sin y = x \quad \text{and} \quad -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} sin1x=ysiny=xand2πy2π

因此,如果 − 1 ≤ x ≤ 1 -1 \leq x \leq 1 1x1,那么 sin ⁡ − 1 x \sin^{-1}x sin1x 是介于 − π 2 -\frac{\pi}{2} 2π π 2 \frac{\pi}{2} 2π 之间,使得其正弦值为 x x x 的数。

例1 计算: (a) sin ⁡ − 1 ( 1 2 ) \sin^{-1}\left(\frac{1}{2}\right) sin1(21) 和 (b) tan ⁡ ( arcsin ⁡ 1 3 ) \tan(\arcsin \frac{1}{3}) tan(arcsin31)


(a) 我们有:

sin ⁡ − 1 ( 1 2 ) = π 6 \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6} sin1(21)=6π

因为 sin ⁡ ( π 6 ) = 1 2 \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} sin(6π)=21 并且 π 6 \frac{\pi}{6} 6π 位于 − π 2 -\frac{\pi}{2} 2π π 2 \frac{\pi}{2} 2π 之间。

(b) 设 θ = arcsin ⁡ 1 3 \theta = \arcsin \frac{1}{3} θ=arcsin31,因此 sin ⁡ θ = 1 3 \sin \theta = \frac{1}{3} sinθ=31。我们可以画出一个夹角为 θ \theta θ 的直角三角形(见图 3),并根据勾股定理得出第三条边的长度为:

9 − 1 = 2 2 \sqrt{9 - 1} = 2\sqrt{2} 91 =22

这使得我们可以从三角形中得出:

tan ⁡ ( arcsin ⁡ 1 3 ) = tan ⁡ θ = 1 2 2 \tan(\arcsin \frac{1}{3}) = \tan \theta = \frac{1}{2\sqrt{2}} tan(arcsin31)=tanθ=22 1
在这里插入图片描述

反函数的消去方程在此情况下变为:

2 sin ⁡ − 1 ( sin ⁡ x ) = x for − π 2 ≤ x ≤ π 2 sin ⁡ ( sin ⁡ − 1 x ) = x for − 1 ≤ x ≤ 1 \begin{align*} \sin^{-1}(\sin x) &= x \quad \text{for} \quad -\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\\ \sin(\sin^{-1}x) &= x \quad \text{for} \quad -1 \leq x \leq 1 \end{align*} sin1(sinx)sin(sin1x)=xfor2πx2π=xfor1x1

反正弦函数 sin ⁡ − 1 \sin^{-1} sin1 的定义域是 [ − 1 , 1 ] [-1, 1] [1,1],值域是 [ − π 2 , π 2 ] [-\frac{\pi}{2}, \frac{\pi}{2}] [2π,2π]。其图像如图 4 所示,可以通过反射线 y = x y = x y=x 从限制正弦函数的图像(见图 2)得到。

在这里插入图片描述

我们知道正弦函数 f f f 是连续的,因此反正弦函数也是连续的。我们也知道正弦函数是可微的,因此反正弦函数也是可微的。我们可以通过定理 6.1.7 的公式来计算 sin ⁡ − 1 \sin^{-1} sin1 的导数,但因为我们知道 sin ⁡ − 1 \sin^{-1} sin1 是可微的,我们也可以通过隐式求导计算它,如下所示。

y = sin ⁡ − 1 x y = \sin^{-1}x y=sin1x,因此 sin ⁡ y = x \sin y = x siny=x 并且 − π 2 ≤ y ≤ π 2 -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} 2πy2π。对 sin ⁡ y = x \sin y = x siny=x 关于 x x x 隐式求导,得到:

cos ⁡ y d y d x = 1 d y d x = 1 cos ⁡ y \begin{align*} \cos y \frac{dy}{dx} &= 1\\ \frac{dy}{dx} &= \frac{1}{\cos y} \end{align*} cosydxdydxdy=1=cosy1

由于 cos ⁡ y ≥ 0 \cos y \geq 0 cosy0,且 − π 2 ≤ y ≤ π 2 -\frac{\pi}{2} \leq y \leq \frac{\pi}{2} 2πy2π,所以:

cos ⁡ y = 1 − sin ⁡ 2 y = 1 − x 2 \cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2} cosy=1sin2y =1x2

因此:

d y d x = 1 cos ⁡ y = 1 1 − x 2 \frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}} dxdy=cosy1=1x2 1

3 d d x ( sin ⁡ − 1 x ) = 1 1 − x 2 − 1 < x < 1 \frac{d}{dx} (\sin^{-1}x) = \frac{1}{\sqrt{1 - x^2}} \quad -1 < x < 1 dxd(sin1x)=1x2 11<x<1

例2 如果 f ( x ) = sin ⁡ − 1 ( x 2 − 1 ) f(x) = \sin^{-1}(x^2 - 1) f(x)</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值