【机器学习】PyTorch手动实现Logistic回归算法

本文介绍了作者在学习机器学习过程中实现的一个二分类逻辑回归算法,详细推导了算法的数学过程,包括Sigmoid函数、梯度下降和交叉熵损失函数的计算。文中还展示了算法的Python实现,并探讨了训练数据的处理和决策边界绘制的方法。
摘要由CSDN通过智能技术生成

本算法算是本人在学习机器学习过程中的入门算法之一。

该算法实现了纯手工打造,每一行代码都包含原创作者的心血,是算法中的劳斯莱斯,向该算法的原创作者致敬!

参考地址:点击打开

计算较为繁琐,需要用到sigmoid函数和梯度下降算法,算法的步骤主要如下:

  1. 二项分布概率公式
  2. 最大似然估计法
  3. 求导数
  4. 梯度下降算法和优化

在这里插入图片描述

上图的主要过程是对交叉熵里的w求导,手写的拍照,可能有些杂乱,而且略有错误,下面再次手动推导一下。

交叉熵是概率统计里一种描述预测差异的方法,主要思路是单分类任务的结果服从二项分布,而且其出现一次的概率为:

P ( x = k ) = ( n k ) P k ( 1 − P ) n − k P(x = k) = { n \choose k} P_{}^{k} (1- P) _{}^{n-k} P(x=k)=(kn)Pk(1P)nk

其总的概率分布为:
∑ i = 1 n P ( x = i ) = ∑ i = i n ( n i ) P i ( 1 − P ) n − i = 1 \sum _{i = 1}^{n}P(x = i) = \sum_{i=i}^{n} { n \choose i} P_{}^{i} (1- P) _{}^{n-i} = 1 i=1nP(x=i)=i=in(in)Pi(1P)ni=1

因为二分类任务的输出一般只有两种(0和1),用y 和1-y来表示,因此产生的交叉熵为: − l o g p i y ( 1 − p i ) 1 − y -logp_{i}^{y}(1-p_i)^{1-y} logpiy(1pi)1y,对此式取对数并化简:
− l o g ( p i y ( 1 − p i ) 1 − y ) = − [ y l o g p i + ( 1 − y ) l o g ( 1 − p i ) ] = − [ y l o g p i + l o g ( 1 − p i ) − y l o g ( 1 − p i ) ] = − [ y l o g p i 1 − p i + l o g ( 1 − p i ) ] -log (p_{i}^{y}(1-p_i)^{1-y}) = -[ylogp_i + (1-y)log(1-p_i)]= \\ -[ylogp_i + log(1-p_i) - ylog(1-p_i) ]= \\ -[ylog\frac{p_i}{1-p_i} + log(1-p_i)] log(piy(1pi)1y)=[ylogpi+(1y)log(1pi)]=[ylogpi+log(1pi)ylog(1pi)]=[ylog1pipi+log(1pi)]

对w求偏导:
∂ f ∂ w = − ∂ l o g ( p i y ( 1 − p i ) 1 − y ) ∂ w = − ∂ [ y l o g p i 1 − p i + l o g ( 1 − p i ) ] ∂ w = − ∂ [ y l o g 1 1 + e − w x 1 − 1 1 + e − w x + l o g ( 1 − 1 1 + e − w x ) ] ∂ w = − ∂ [ y l o g 1 1 + e − w x e − w x 1 + e − w x + l o g ( e − w x 1 + e − w x ) ] ∂ w = − ∂ [ y l o g 1 e − w x + l o g ( e − w x 1 + e − w x ) ] ∂ w = − ∂ [ y w x + l o g ( e − w x 1 + e − w x ) ] ∂ w = − y x − ∂ [ l o g ( e − w x 1 + e − w x ) ] ∂ w = − y x − 1 + e − w x e − w x − e − w x ( − x ) e − w x + ( 1 + e − w x ) e − w x ( − x ) [ 1 + e − w x ] 2 = − y x − 1 + e − w x e − w x e − 2 w x ( x ) − e − w x x − x e − 2 w x [ 1 + e − w x ] 2 = − y x − − x 1 + e − w x = ( y ^ − y ) x \frac {\partial f}{\partial w} = -\frac {\partial log (p_{i}^{y}(1-p_i)^{1-y})}{\partial w} =\\ -\frac {\partial \biggl [ylog\frac{p_i}{1-p_i} + log(1-p_i) \biggr]}{\partial w} =\\ -\frac {\partial \biggl [ylog\frac{\frac{1}{ 1+e^{-wx}}}{1 - \frac {1}{1 + e^{-wx}}}+ log(1-\frac {1}{1 + e^{-wx}}) \biggr]}{\partial w} = \\ -\frac {\partial \biggl [ylog\frac{\frac{1}{ 1+e^{-wx}}}{ \frac {e^{-wx}}{1 + e^{-wx}}}+ log(\frac {e^{-wx}}{1 + e^{-wx}}) \biggr]}{\partial w} =\\ -\frac {\partial \biggl [ylog\frac{1}{e^{-wx}}+ log(\frac {e^{-wx}}{1 + e^{-wx}}) \biggr]}{\partial w} = \\ -\frac {\partial \biggl [ywx+ log(\frac {e^{-wx}}{1 + e^{-wx}}) \biggr]}{\partial w} =\\ -yx - \frac {\partial \biggl [ log(\frac {e^{-wx}}{1 + e^{-wx}}) \biggr]}{\partial w} = \\ -yx- \frac{1+ e^{-wx}}{e^{-wx}} \frac {-e^{-wx} (-x) e^{-wx} + (1+e^{-wx} )e^{-wx}(-x)}{[1+e^{-wx}]^2}=\\ -yx - \frac{1+ e^{-wx}}{e^{-wx}} \frac {e^{-2wx} (x) -e^{-wx}x- x e^{-2wx} }{[1+e^{-wx}]^2}=\\ -yx - \frac{-x}{1+e^{-wx}} = (\hat y - y)x wf=wlog(piy(1pi)1y)=w[ylog1pipi+log(1pi)]=w[ylog11+ewx11+ewx1+log(11+ewx1)]=w[ylog1+ewxewx1+ewx1+log(1+ewxewx)]=w[ylogewx1+log(1+ewxewx)]=w[ywx+log(1+ewxewx)]=yxw[log(1+ewxewx)]=yxewx1+ewx[1+ewx]2ewx(x)ewx+(1+ewx)ewx(x)=yxewx1+ewx[1+ewx]2e2wx(x)ewxxxe2wx=yx1+ewxx=(y^y)x

上图中,y和 y ^ \hat y y^的顺序能不能交换呢?测试是不可以的,为什么呢?此处还有存疑,有时间再好好想想。

进一步的阐述说明:

  1. sigmoid函数没有偏执bias参数。
  2. 上面导数推导图中的连乘号不准确,实际是表达了预测结果与实际结果两个矩阵向量的点积运算。
  3. 算法测度损失使用交叉熵。从熵的性质可以知道,交叉熵是熵的最大值,使用交叉熵的主要原因是便于计算吗?
  4. 二分类问题中,y 和 y ^ \hat y y^的概率和是1,次数之和是n,而不是y 的值为1, y ^ \hat y y^的值为0;如果是这样的话,就没法求导了。
  5. 划线模块draw_desion_line的原理是怎样的呢?在模块load_dataset中对x增加一个维度的原因是什么呢?此问题是二分类问题画图的核心问题之一 ,初学者一般都会提出这样一个问题,这个问题的实质请参考如下网址的解释说明:https://blog.csdn.net/xq151750111/article/details/121871627,以及:https://scipython.com/blog/plotting-the-decision-boundary-of-a-logistic-regression-model/https://stats.stackexchange.com/questions/202668/calculation-of-decision-boundaries-with-perceptron。回到第二个问题,测试集也可以将第一列设置为0,不影响最后的画图。

在这里插入图片描述

代码:



import numpy as np
import matplotlib.pyplot as plt

def sigmoid(z):
    return 1.0/(1+np.exp(-z))


# datas NxD
# labs Nx1
# w    Dx1

def weight_update(datas,labs,w,alpha=0.01):
    z = np.dot(datas,w) # Nx1
    h = sigmoid(z)        # Nx1
    Error = -( labs-h )       # Nx1 
    w = w - alpha*np.dot(datas.T,Error)
    return w

# 随机梯度下降
def train_LR_batch(datas,labs,batchsize=80,n_epoch=2,alpha=0.005):
    
    print("epoch:%d,alpha:%.8f batchsize:%d"%(n_epoch,alpha,batchsize))
    
    N,D = np.shape(datas)
    
    print("N:%f D:%f"% (N,D))
    
    # weight 初始化
    w = np.ones([D,1])  # Dx1
    N_batch = N//batchsize  #取整数
    
    #print("n:%d d:%d batchsize:%d"%(N,D,batchsize))
    
    for i in range(n_epoch):
        
        # 数据打乱
        rand_index  = np.random.permutation(N).tolist()
        # 每个batch 更新一下weight
        for j in range(N_batch):
            #print("i:%d j:%d N_batch:%d\r\n"%(i,j,N_batch))
            # alpha = 4.0/(i+j+1) +0.01
            index = rand_index[j*batchsize:(j+1)*batchsize]
            batch_datas = datas[index]
            batch_labs = labs[index]
            w=weight_update(batch_datas,batch_labs,w,alpha)
    
        error = test_accuracy(datas,labs,w)
        #print("epoch %d  error  %.2f%%"%(i,error*100))
    return w


def train_LR(datas,labs,n_epoch=2,alpha=0.005):
    N,D = np.shape(datas)   
    
    print("N:%f D:%f"% (N,D))
    
    w = np.ones([D,1])  # Dx1
    # 进行n_epoch轮迭代
    for i in range(n_epoch):
        w = weight_update(datas,labs,w,alpha)
        error_rate=test_accuracy(datas,labs,w)
        print("epoch %d error %.3f%%"%(i,error_rate*100))
    return w


def test_accuracy(datas,labs,w):
    N,D = np.shape(datas)
    z = np.dot(datas,w) # Nx1
    h = sigmoid(z)        # Nx1
    lab_det = (h>0.5).astype(np.float)
    error_rate=np.sum(np.abs(labs-lab_det))/N
    return error_rate


def draw_desion_line(datas,labs,w,name="0.jpg"):
    dic_colors={0:(.8,0,0),1:(0,.8,0)}
  
    #print(labs)
    
    # 画数据点
    for i in range(2):
        #print(i)
        index = np.where(labs==i)[0]

        sub_datas = datas[index]
        #print(sub_datas)
        plt.scatter(sub_datas[:,1],sub_datas[:,2],s=16.,color=dic_colors[i])
    
    # 画判决线
    min_x = np.min(datas[:,1])
    max_x = np.max(datas[:,1])
    
   
    w = w[:,0]
    x = np.arange(min_x,max_x,0.01)
    
    #print(x)
    
    y = -(x*w[1]+w[0])/w[2]
    
    #y = -(x*w[2]+w[1])/w[0]
    
    plt.plot(x,y)
    
    #print(w)
    
    plt.savefig(name)

    
def load_dataset(file):    
    with open(file,"r",encoding="utf-8") as f:
        lines = f.read().splitlines()

    # 取 lab 维度为 N x 1
    labs = [line.split("\t")[-1] for line in lines]
    labs = np.array(labs).astype(np.float32)
    labs= np.expand_dims(labs,axis=-1) # Nx1
    
    #rint(labs)

    # 取数据 增加 一维全是1的特征
    datas = [line.split("\t")[:-1] for line in lines]
    datas = np.array(datas).astype(np.float32)
    N,D = np.shape(datas)
    # 增加一个维度
    datas = np.c_[np.ones([N,1]),datas]
    
    #print(datas)
    
    return datas,labs


if __name__ == "__main__":
    ''' 实验1 基础测试数据'''
    # 加载数据
    file = "testset.txt"
    datas,labs = load_dataset(file)
    
    #weights = train_LR(datas,labs,alpha=0.001,n_epoch=800)
    
    weights = train_LR_batch(datas,labs,batchsize=80,alpha=0.001,n_epoch=800)
    print(weights)
    draw_desion_line(datas,labs,weights,name="test_1.jpg")
    


训练需要的数据集testset.txt文件:

-0.017612	14.053064	0
-1.395634	4.662541	1
-0.752157	6.538620	0
-1.322371	7.152853	0
0.423363	11.054677	0
0.406704	7.067335	1
0.667394	12.741452	0
-2.460150	6.866805	1
0.569411	9.548755	0
-0.026632	10.427743	0
0.850433	6.920334	1
1.347183	13.175500	0
1.176813	3.167020	1
-1.781871	9.097953	0
-0.566606	5.749003	1
0.931635	1.589505	1
-0.024205	6.151823	1
-0.036453	2.690988	1
-0.196949	0.444165	1
1.014459	5.754399	1
1.985298	3.230619	1
-1.693453	-0.557540	1
-0.576525	11.778922	0
-0.346811	-1.678730	1
-2.124484	2.672471	1
1.217916	9.597015	0
-0.733928	9.098687	0
-3.642001	-1.618087	1
0.315985	3.523953	1
1.416614	9.619232	0
-0.386323	3.989286	1
0.556921	8.294984	1
1.224863	11.587360	0
-1.347803	-2.406051	1
1.196604	4.951851	1
0.275221	9.543647	0
0.470575	9.332488	0
-1.889567	9.542662	0
-1.527893	12.150579	0
-1.185247	11.309318	0
-0.445678	3.297303	1
1.042222	6.105155	1
-0.618787	10.320986	0
1.152083	0.548467	1
0.828534	2.676045	1
-1.237728	10.549033	0
-0.683565	-2.166125	1
0.229456	5.921938	1
-0.959885	11.555336	0
0.492911	10.993324	0
0.184992	8.721488	0
-0.355715	10.325976	0
-0.397822	8.058397	0
0.824839	13.730343	0
1.507278	5.027866	1
0.099671	6.835839	1
-0.344008	10.717485	0
1.785928	7.718645	1
-0.918801	11.560217	0
-0.364009	4.747300	1
-0.841722	4.119083	1
0.490426	1.960539	1
-0.007194	9.075792	0
0.356107	12.447863	0
0.342578	12.281162	0
-0.810823	-1.466018	1
2.530777	6.476801	1
1.296683	11.607559	0
0.475487	12.040035	0
-0.783277	11.009725	0
0.074798	11.023650	0
-1.337472	0.468339	1
-0.102781	13.763651	0
-0.147324	2.874846	1
0.518389	9.887035	0
1.015399	7.571882	0
-1.658086	-0.027255	1
1.319944	2.171228	1
2.056216	5.019981	1
-0.851633	4.375691	1
-1.510047	6.061992	0
-1.076637	-3.181888	1
1.821096	10.283990	0
3.010150	8.401766	1
-1.099458	1.688274	1
-0.834872	-1.733869	1
-0.846637	3.849075	1
1.400102	12.628781	0
1.752842	5.468166	1
0.078557	0.059736	1
0.089392	-0.715300	1
1.825662	12.693808	0
0.197445	9.744638	0
0.126117	0.922311	1
-0.679797	1.220530	1
0.677983	2.556666	1
0.761349	10.693862	0
-2.168791	0.143632	1
1.388610	9.341997	0
0.317029	14.739025	0

anaconda jupyter notebook中的运行结果截图:
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值