欧拉方程推导

形如:
x n y ( n ) + x n − 1 y ( n − 1 ) + x n − 2 y ( n − 2 ) + . . . . . . + x 3 y ( 3 ) + x 2 y ′ ′ + x 1 y ′ + y = f ( x ) x^n y ^{(n)} + x^{n-1} y ^{(n-1)} + x^{n-2} y ^{(n-2)} + ......+ x^3 y ^{(3)} + x^2 y ^{''} + x^1 y ^{'} + y = f(x) xny(n)+xn1y(n1)+xn2y(n2)+......+x3y(3)+x2y′′+x1y+y=f(x)
的方程叫做欧拉微分方程。

欧拉方程中包含很多高阶微分的细节。对我个人来说,理解和掌握欧拉方程的求解,对深化微分知识点的理解有很大帮助。

欧拉方程求解原理:

设 x = e t , 则 t = l n x ,可得: 设x = e^t, 则t = lnx,可得: x=et,t=lnx,可得:

  1. d t d x = 1 x (1.1) \frac {dt}{dx} = \frac{1}{x} \tag{1.1} dxdt=x1(1.1)

  2. d y d x = d y d t d t d x = 1 x d y d t (1.2) \frac {dy}{dx} =\frac {dy}{dt} \frac {dt}{dx} = \frac{1}{x} \frac {dy}{dt} \tag{1.2} dxdy=dtdydxdt=x1dtdy(1.2)

  3. d 2 y d x 2 = d ( 1 x d y d t ) d x = d ( 1 x ) d y d t + 1 x d ( d y d t ) d x = \frac {d^2y}{dx^2} = \frac{d( \frac{1}{x} \frac {dy}{dt})}{dx} = \frac{d( \frac{1}{x}) \frac {dy}{dt} + \frac{1}{x} d(\frac{dy}{dt})}{dx}= dx2d2y=dxd(x1dtdy)=dxd(x1)dtdy+x1d(dtdy)=

− d x x 2 d y d t + 1 x d ( d y d t ) d x = \frac{-\frac{dx}{x^2}\frac {dy}{dt} + \frac{1}{x} d(\frac{dy}{dt})}{dx}= dxx2dxdtdy+x1d(dtdy)=

− 1 x 2 d y d t + 1 x d ( d y d t ) d t d t d x = -\frac{1}{x^2}\frac {dy}{dt} + \frac{1}{x} \frac{d(\frac{dy}{dt})}{dt} \frac{dt}{dx}= x21dtdy+x1dtd(dtdy)dxdt=

− 1 x 2 d y d t + 1 x 2 d 2 y d t 2 (1.3) -\frac{1}{x^2}\frac {dy}{dt} + \frac{1}{x^2} \frac{d^2y}{dt^2} \tag{1.3} x21dtdy+x21dt2d2y(1.3)

  1. d 3 y d x 3 = d ( d 2 y d x 2 ) d x = d ( − 1 x 2 d y d t + 1 x 2 d 2 y d t 2 ) d x = \frac {d^3y}{dx^3} = \frac{d (\frac {d^2y}{dx^2})}{dx} = \frac {d(-\frac{1}{x^2}\frac {dy}{dt} + \frac{1}{x^2} \frac{d^2y}{dt^2})}{dx} = dx3d3y=dxd(dx2d2y)=dxd(x21dtdy+x21dt2d2y)=
    2 d x x 3 d y d t − 1 x 2 d ( d y d t ) − 2 d x x 3 d 2 y d t 2 + 1 x 2 d ( d 2 y d t 2 ) d x = \frac{\frac{2dx}{x^3}\frac{dy}{dt} - \frac{1}{x^2} d(\frac{dy}{dt}) - \frac{2dx}{x^3} \frac{d^2y}{dt^2} + \frac{1}{x^2} d(\frac{d^2y}{dt^2}) }{dx} = dxx32dxdtdyx21d(dtdy)x32dxdt2d2y+x21d(dt2d2y)=

2 x 3 d y d t − 1 x 2 d ( d y d t ) d t d t d x − 2 x 3 d 2 y d t 2 + 1 x 2 d ( d 2 y d t 2 ) d t d t d x = \frac{2}{x^3}\frac{dy}{dt} - \frac{1}{x^2} \frac{d(\frac{dy}{dt})}{dt}\frac {dt}{dx} - \frac{2}{x^3} \frac{d^2y}{dt^2} + \frac{1}{x^2} \frac{d(\frac{d^2y}{dt^2}) }{dt} \frac{dt}{dx}= x32dtdyx21dtd(dtdy)dxdtx32dt2d2y+x21dtd(dt2d2y)dxdt=

2 x 3 d y d t − 1 x 3 d 2 y d t 2 − 2 x 3 d 2 y d t 2 + 1 x 3 d 3 y d t 3 = \frac{2}{x^3}\frac{dy}{dt} - \frac{1}{x^3} \frac{d^2y}{dt^2}- \frac{2}{x^3} \frac{d^2y}{dt^2} + \frac{1}{x^3} \frac{d^3y}{dt^3} = x32dtdyx31dt2d2yx32dt2d2y+x31dt3d3y=

2 x 3 d y d t − 3 x 3 d 2 y d t 2 + 1 x 3 d 3 y d t 3 = \frac{2}{x^3}\frac{dy}{dt} - \frac{3}{x^3} \frac{d^2y}{dt^2}+ \frac{1}{x^3} \frac{d^3y}{dt^3} = x32dtdyx33dt2d2y+x31dt3d3y=

1 x 3 ( 2 d y d t − 3 d 2 y d t 2 + d 3 y d t 3 ) (1.4) \frac{1}{x^3} (2\frac{dy}{dt} - 3 \frac{d^2y}{dt^2}+ \frac{d^3y}{dt^3} ) \tag{1.4} x31(2dtdy3dt2d2y+dt3d3y)(1.4)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值