样本方差与总体方差之商服从卡方分布

文章详细阐述了一项在浙江大学版《概率论和数理统计》中重要的统计学定理,该定理在后续统计学学习中频繁出现。定理证明涉及将样本均值和样本方差转换为标准正态分布,利用χ^2分布证明(n-1)s^2/σ^2服从χ^2(n-1)分布,进而引出t分布和f分布的应用,如样本均值与样本方差的独立性以及t检验和f检验的相关定理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

浙江大学版《概率论和梳理统计》第6章有个著名的定理,该定理在统计学中占有重要地位,在以后的统计学学习中,多次看到
该定理的应用和推论。

该定理定义如下:
在这里插入图片描述

教材中对该定理的证明:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

鉴于繁琐的证明过程,一直没怎么关注这个定理的证明,后来发现,该定理在统计学中有大量应用,该定理是学习统计学绕不开的核心定理之一。为了加深印象和进一步领会证明过程,根据教材的讲解,再一次复述一下该定理的证明过程。

证明过程的几个步骤依次如下:

  1. ( n − 1 ) s 2 σ 2 = ∑ i = 1 n ( x i − x ˉ ) 2 σ 2 = ∑ i = 1 n ( ( x i − μ ) − ( x ˉ − μ ) ) 2 σ 2 = ∑ i = 1 n [ ( x i − μ ) − ( x ˉ − μ ) σ ] 2 (1.1) \frac {(n - 1) s ^2}{\sigma ^ 2} = \frac{ \sum _{i = 1} ^{n} ( x_i - \bar x)^2 } {\sigma^2} = \\ \frac{ \sum _{i = 1} ^{n} ( (x_i - \mu ) - (\bar x - \mu))^2 } {\sigma^2} = \\ \sum _{i = 1} ^{n} \biggl [ \frac{(x_i - \mu ) - (\bar x - \mu)} {\sigma} \biggr ] ^ 2 \tag {1.1} σ2(n1)s2=σ2i=1n(xixˉ)2=σ2i=1n((xiμ)(xˉμ))2=i=1n[σ(xiμ)(xˉμ)]2(1.1)

  2. z i = x i − μ σ , z ˉ = x ˉ − μ σ z_i = \frac {x_i - \mu} {\sigma}, \bar z = \frac {\bar x - \mu} {\sigma} zi=σxiμ,zˉ=σxˉμ 带入上式可得:

∑ i = 1 n [ ( x i − μ ) − ( x ˉ − μ ) σ ] 2 = ∑ i = 1 n ( z i − z ˉ ) 2 = ∑ i = 1 n ( z i 2 + z ˉ 2 − 2 z ˉ z i ) = ∑ i = 1 n z i 2 + n z ˉ 2 − 2 z ˉ ∑ i = 1 n z i = ∑ i = 1 n z i 2 + n z ˉ 2 − 2 z ˉ n z ˉ = ∑ i = 1 n z i 2 + n z ˉ 2 − 2 n z ˉ 2 = ∑ i = 1 n z i 2 − n z ˉ 2 (1.2) \sum _{i = 1} ^{n} \biggl [ \frac{(x_i - \mu ) - (\bar x - \mu)} {\sigma} \biggr ] ^ 2 = \\ \sum _{i = 1} ^{n} (z_i - \bar z)^ 2 = \sum _{i = 1} ^{n} (z_i ^2 + \bar z ^ 2 - 2 \bar z z_i) = \\ \sum _{i = 1} ^{n} z_i ^ 2+ n \bar z ^2 - 2 \bar z \sum _{i = 1} ^{n}z_i = \sum _{i = 1} ^{n} z_i ^ 2+ n \bar z ^2 - 2 \bar z n \bar z = \\ \sum _{i = 1} ^{n} z_i ^ 2+ n \bar z ^2 - 2 n \bar z ^2 \\ = \sum _{i = 1} ^{n} z_i ^ 2 - n \bar z ^2 \tag {1.2} i=1n[σ(xiμ)(xˉμ)]2=i=1n(zizˉ)2=i=1n(zi2+zˉ22zˉzi)=i=1nzi2+nzˉ22zˉi=1nzi=i=1nzi2+nzˉ22zˉnzˉ=i=1nzi2+nzˉ22nzˉ2=i=1nzi2nzˉ2(1.2)

  1. 设 u = A z,其中u为一维行向量,A为正交矩阵,A矩阵的第一个行向量为 1 n \frac {1}{\sqrt n} n 1,由于:

∑ i = 1 n z i 2 = z t z = z t A t A z = ( A z ) t A z = u t u \sum _{i = 1} ^{n} z_i ^ 2 = z^{t} z = z^{t} A^t A z = (Az)^t Az = u^t u i=1nzi2=ztz=ztAtAz=(Az)tAz=utu

u 1 = ∑ i = 1 n A 1 i z ˉ i 1 = ∑ i = 1 n 1 n z ˉ i 1 = n z ˉ u_1 = \sum_{i=1}^{n}A_{1i} \bar z_{i1} = \sum_{i=1}^{n} \frac{1}{\sqrt n}\bar z_{i1} = \sqrt n \bar z u1=i=1nA1izˉi1=i=1nn 1zˉi1=n zˉ

解释:
(1) ∑ i = 1 n z i 2 = z t z \sum _{i = 1} ^{n} z_i ^ 2 = z^{t} z i=1nzi2=ztz是一个重要的基础知识,需要理解的基础上牢记。

(2) 因为z和 z ˉ \bar z zˉ都是一维列向量,故 z ˉ i 1 = z ˉ i \bar z_{i1} = \bar z_i zˉi1=zˉi

  1. 将上述转换带入式子(1.2)可得:

∑ i = 1 n z i 2 − n z ˉ 2 = u t u − u 1 2 = ∑ i = 2 n u i 2 \sum _{i = 1} ^{n} z_i ^ 2 - n \bar z ^2 = u^tu - u_1^2 = \sum _{i=2}^{n} u_i^2 i=1nzi2nzˉ2=utuu12=i=2nui2

因为 z ∼ N ( 0 , 1 ) z\sim N(0,1) zN(0,1),所以 u i u_i ui服务从自由度为1的 χ 2 \chi^2 χ2分布, ∑ i = 2 n u i 2 \sum _{i=2}^{n} u_i^2 i=2nui2 服从自由度为n-1的 χ 2 \chi^2 χ2分布。
因此可证明:
( n − 1 ) s 2 σ 2 ∼ χ 2 ( n − 1 ) \frac {(n - 1) s ^2}{\sigma ^ 2} \sim \chi ^ 2(n-1) σ2(n1)s2χ2(n1)

  1. 由已知结论,多维随机变量的正态分布,若多个变量之间的协方差为0时,该正态分布的多个随机变量之间相互独立。
    因为 z ∼ N ( 0 , 1 ) , E z = 0 z\sim N(0,1),E z = 0 zN(0,1),Ez=0,所以:
    c o v ( z i , z j ) = E [ ( E z i − z i ) ( E z j − z j ) ] = E ( z i z j ) − E z i E z j = E ( z i z j ) cov(z_i,z_j) = E [ (Ez_i - z_i)(E z_j - z_j) ] = E(z_i z_j) - Ez_i Ez_j = E(z_i z_j) cov(zi,zj)=E[(Ezizi)(Ezjzj)]=E(zizj)EziEzj=E(zizj)
    现在考虑 E ( z i z j ) E(z_i z_j) E(zizj)的值。
    根据两个随机变量之积的概率分布公式可得:
    P ( z i z j ) = ∫ − ∞ + ∞ 1 ∣ z i ∣ f ( z i ) g ( z z i ) d z i P(z_i z_j) = \int _{-\infty }^{+ \infty}\frac {1} {|z_i|} f(z_i) g(\frac{z}{z_i}) d z_i P(zizj)=+zi1f(zi)g(ziz)dzi
    此公式无法直接得到我们想要的答案。转换一下思路,根据期望值的定义直接求解:
    E ( z i z j ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ z i z j f ( z i ) g ( z j ) d z i d z j = ∫ − ∞ + ∞ z i g ( z i ) d z i ∫ − ∞ + ∞ z j f ( z j ) d z j (1.3) E(z_i z_j) = \int _{-\infty}^{+\infty} \int _{-\infty}^{+\infty} z_i z_j f(z_i)g(z_j) d z_i dz_j = \\ \int _{-\infty}^{+\infty}z_i g(z_i) d z_i \int _{-\infty}^{+\infty} z_j f(z_j)dz_j \tag {1.3} E(zizj)=++zizjf(zi)g(zj)dzidzj=+zig(zi)dzi+zjf(zj)dzj(1.3)

上式中,若i=j则为1,否则为0。进一步考察u的协方差:
c o v ( u i , u j ) = E [ ( E u i − u i ) ( E u j − u j ) ] = E ( u i u j ) − E u i E u j = E ( u i u j ) cov(u_i,u_j) = E [ (Eu_i - u_i)(E u_j - u_j) ] = E(u_i u_j) - Eu_i Eu_j = E(u_i u_j) cov(ui,uj)=E[(Euiui)(Eujuj)]=E(uiuj)EuiEuj=E(uiuj)
由于u是z的线性变换,根据上面的(1.3)可得,若i=j则协方差为1,否则协方差为0。由此可以证明z的线性无关性,进一步的,结合上图课本中的截图,可以证明 x ˉ 与 s 2 独立 \bar x 与 s^2独立 xˉs2独立

该定理直接证明了另外的两个定理。

定理:
x ˉ − u s n ∼ t ( n − 1 ) \frac {\bar x - u}{ \frac {s}{\sqrt n}} \sim t(n-1) n sxˉut(n1)

证明:
x ˉ − u σ n = x ˉ − u σ n σ s = x ˉ − u σ n ( n − 1 ) s 2 ( n − 1 ) σ 2 ∼ t ( n − 1 ) \frac {\bar x - u}{ \frac {\sigma}{\sqrt n}} = \frac {\bar x - u}{ \frac {\sigma}{\sqrt n}} \frac {\sigma}{s}= \\ \frac {\frac {\bar x - u}{ \frac {\sigma}{\sqrt n}} } {\sqrt { \frac {(n-1)s^2} {(n -1)\sigma ^ 2} } } \sim t(n-1) n σxˉu=n σxˉusσ=(n1)σ2(n1)s2 n σxˉut(n1)

定理:
s 1 2 s 2 2 σ 1 2 σ 2 2 ∼ t ( n − 1 , n − 1 ) \frac { \frac {s_1 ^ 2}{s_2 ^ 2} } { \frac {\sigma_1 ^ 2}{\sigma_2 ^ 2}} \sim t(n-1,n-1) σ22σ12s22s12t(n1,n1)

证明:

因为
( n − 1 ) s 1 2 σ 1 2 ∼ χ 2 ( n − 1 ) ( n − 1 ) s 2 2 σ 2 2 ∼ χ 2 ( n − 1 ) \frac {(n - 1) s_1 ^2}{\sigma _1 ^ 2} \sim \chi ^ 2(n-1) \\ \frac {(n - 1) s_2 ^2}{\sigma _2 ^ 2} \sim \chi ^ 2(n-1) σ12(n1)s12χ2(n1)σ22(n1)s22χ2(n1)

根据f分布的定义可知

( n − 1 ) s 1 2 ( n − 1 ) σ 1 2 / ( n − 1 ) s 2 2 ( n − 1 ) σ 2 2 = s 1 2 / s 2 2 σ 1 2 / σ 2 2 ∼ f ( n − 1 , n − 1 ) \frac {(n - 1) s_1 ^2}{(n-1)\sigma _1 ^ 2} / \frac {(n - 1) s_2 ^2}{(n -1)\sigma _2 ^ 2} = \frac {s_1^2 /s_2 ^2}{\sigma_1 ^ 2 / \sigma_2^2} \sim f(n-1,n-1) (n1)σ12(n1)s12/(n1)σ22(n1)s22=σ12/σ22s12/s22f(n1,n1)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值