【泊松过程数学公式推导】

latex常见用法如下:https://blog.csdn.net/ViatorSun/article/details/82826664

本文简要描述一下 《高等教育出版社》 **浙江大学《概率论与数理统计》**一 书关于泊松过程的概率和质点的点间距离概率公式的推导过程。

(一)泊松过程的概率推导

在这里插入图片描述

理解了上面的思路才能更好的理解泊松过程的数学模型和本质。
上面的思路是:

  1. 将时间过程分解为两部分,第一部分是事件不可微分的时间间隔,第二部分是事件发生次数可以微分的时间间隔,这两个部分是概率相乘的关系(而不是相加)。
  2. 先算出k=0时的泊松过程,然后计算k>=1时的泊松过程方程,依赖的数学知识是导数和求解微分方程,整个过程严密有条理。
  3. 复现推导过程。
    (1)当k = 0时:
    P 0 ( t 0 , t + Δ t ) = P 0 ( t 0 , t ) P 0 ( t , t + Δ t ) = P 0 ( t 0 , t ) ( 1 − λ Δ t − o ( Δ t ) ) 即 : lim ⁡ Δ t → 0 P 0 ( t 0 , t + Δ t ) − P 0 ( t 0 , t ) Δ t = − λ P 0 ( t 0 , t ) − o ( Δ t ) P 0 ( t 0 , t ) Δ t 即: P 0 ( t 0 , t ) = e − λ ( t − t 0 ) P_0(t_0,t+\Delta t) = P_0(t_0,t) P_0(t,t+ \Delta t) = P_0(t_0,t)(1 - \lambda \Delta t - o( \Delta t) ) \\ \\即:\\ \lim_{\Delta t \to 0} \frac {P_0(t_0,t+\Delta t) - P_0(t_0,t) }{\Delta t} = -\lambda P_0(t_0,t) - \frac {o(\Delta t) P_0(t_0,t)}{\Delta t } \\即:P_0(t_0,t) = e^{-\lambda (t - t_0)} P0(t0,t+Δt)=P0(t0,t)P0(t,t+Δt)=P0(t0,t)(1λΔto(Δt)):Δt0limΔtP0(t0,t+Δt)P0(t0,t)=λP0(t0,t)Δto(Δt)P0(t0,t)即:P0(t0,t)=eλ(tt0)

(2)当k大于等于1时:

P k ( t 0 , t + Δ t ) = P k − j ( t 0 , t ) P j ( t , t + Δ t ) = P k ( t 0 , t ) P 0 ( t , t + Δ t ) + P k − 1 ( t 0 , t ) P 1 ( t , t + Δ t ) + o ( Δ t ) = P k ( t 0 , t ) ( 1 − λ Δ t − o ( Δ t ) ) + P k − 1 ( t 0 , t ) ( λ Δ t ) + o ( Δ t ) 即 : lim ⁡ Δ t → 0 P k ( t 0 , t + Δ t ) − P k ( t 0 , t ) Δ t = − λ P k ( t 0 , t ) + λ P k − 1 ( t 0 , t ) + o ( Δ t ) 即: P k ( t 0 , t ) = e − λ ( t − t 0 ) 注意:此处需要求解一阶非齐次微分方程 : 假设 u ′ = λ u ,即 d u / d t = λ d t ,可得: u = C 1 e λ t 带入上述一元非齐次微分方程可得 : d P 1 / d t = − λ P 1 + λ e − λ t d P 1 u + λ P 1 u = u λ e − λ t d t ( P 1 u ) ′ = u λ e − λ t d t P 1 u = ∫ u λ e − λ t d t = ∫ λ e − λ t e λ t d t = ∫ λ d t P 1 = e − λ t ∫ λ d t = λ t e − λ t P_k(t_0,t+\Delta t) = P_{k-j}(t_0,t) P_{j}(t,t+ \Delta t) = \\\\ P_k(t_0,t)P_{0}(t,t+ \Delta t) + P_{k-1}(t_0,t)P_{1}(t,t+ \Delta t) + o(\Delta t) =\\ P_k(t_0,t)(1 - \lambda \Delta t - o( \Delta t) ) + P_{k-1}(t_0,t)(\lambda \Delta t ) + o(\Delta t) \\ 即:\\ \lim_{\Delta t \to 0} \frac {P_k(t_0,t+\Delta t) - P_k(t_0,t) }{\Delta t} = -\lambda P_k(t_0,t) + \lambda P_{k-1}(t_0,t)+ o(\Delta t) \\ 即:P_k(t_0,t) = e^{-\lambda (t - t_0)} \\ \color {red}注意:此处需要求解一阶非齐次微分方程:\\ 假设u' = \lambda u,即du/dt = \lambda dt ,可得:u = C_1 e^{\lambda t} 带入上述一元非齐次微分方程可得: \\ dP_1/dt = -\lambda P_1 + \lambda e^{-\lambda t}\\ dP_1 u + \lambda P_1 u = u \lambda e^{-\lambda t} dt\\ (P_1 u )' = u \lambda e^{-\lambda t} dt \\ P_1 u = \int u \lambda e^{-\lambda t} dt = \int \lambda e^{-\lambda t} e^{\lambda t} dt = \int \lambda dt \\ P_1 = e^{-\lambda t} \int \lambda dt = \lambda t e^{-\lambda t} \\ Pk(t0,t+Δt)=Pkj(t0,t)Pj(t,t+Δt)=Pk(t0,t)P0(t,t+Δt)+Pk1(t0,t)P1(t,t+Δt)+o(Δt)=Pk(t0,t)(1λΔto(Δt))+Pk1(t0,t)(λΔt)+o(Δt):Δt0limΔtPk(t0,t+Δt)Pk(t0,t)=λPk(t0,t)+λPk1(t0,t)+o(Δt)即:Pk(t0,t)=eλ(tt0)注意:此处需要求解一阶非齐次微分方程:假设u=λu,即du/dt=λdt,可得:u=C1eλt带入上述一元非齐次微分方程可得:dP1/dt=λP1+λeλtdP1u+λP1u=uλeλtdt(P1u)=uλeλtdtP1u=uλeλtdt=λeλteλtdt=λdtP1=eλtλdt=λteλt
(3)当k大于等于2时:

P k = ( λ ( t − t 0 ) ) k ! k e − λ ( t − t 0 ) P_k = \frac{ (\lambda (t-t_0))^k }{!k} e^{-\lambda (t-t_0)} Pk=!k(λ(tt0))keλ(tt0)

(4)当 λ \lambda λ是关于t的函数时,最终推导结果如下:
P k = ( ∫ λ ( t − t 0 ) d t ) k ! k e − ∫ λ ( t − t 0 ) d t P_k = \frac{ (\int \lambda (t-t_0) dt)^k }{!k} e^{-\int \lambda (t-t_0) dt} Pk=!k(λ(tt0)dt)keλ(tt0)dt

(二)泊松过程质点距离的概率

在这里插入图片描述

注意:

  1. (3.12)公式中,当n趋于无穷时, lim ⁡ k → + ∞ ( k − λ t ) k = 1 \lim _{k \to +\infty} \frac {(k- \lambda t)}{k} = 1 limk+k(kλt)=1
  2. (3.14)公式中, ∫ 0 + ∞ f t i − 1 ( t i − 1 ) d t i − 1 = 1 \int _{0} ^{+\infty} f_{t_{i-1}}(t_{i-1})d_{t_{i-1}} = 1 0+fti1(ti1)dti1=1
  3. 泊松分布的等待时间和质点的点间距离是紧密联系的两个问题,最后两个定理是综合这两者和泊松过程得出的结论,也是泊松过程的核心定理,需要在理解的基础上牢记。
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值