关于大数定律的两个题目。
例1
注意牢记公式: P { X } = P { ∑ i = 1 n x i − n μ n σ < x } = ∫ − ∞ x e − x 2 2 d x 2 π P\{ X\} = P \{\frac { \sum_{i=1}^{n} x_i - n \mu}{\sqrt {n} \sigma} < x \} = \frac {\int _{-\infty} ^{x} e ^{- \frac {x^2}{2}}dx} {\sqrt {2 \pi }} P{X}=P{nσ∑i=1nxi−nμ<x}=2π∫−∞xe−2x2dx
注意此处的分母是
n
σ
\sqrt{n} \sigma
nσ,
σ
\sigma
σ与
σ
2
\sigma ^ 2
σ2是不同的,前者是标准差,后者是平方差。此公式的分子分母分别除以n后,转化为平均数的中心极限定理形式:
P
{
X
}
=
P
{
x
ˉ
−
μ
σ
n
<
x
}
=
∫
−
∞
x
e
−
x
2
2
d
x
2
π
P\{ X\} = P \{\frac { \bar x - \mu}{ \frac{ \sigma} {\sqrt {n}} } < x \} = \frac {\int _{-\infty} ^{x} e ^{- \frac {x^2}{2}}dx} {\sqrt {2 \pi }}
P{X}=P{nσxˉ−μ<x}=2π∫−∞xe−2x2dx
此外,还有一个标准化随机变量的形式:
x − μ σ \frac {x - \mu}{\sigma} σx−μ
该形式在标准高斯分布和统计学中多有涉及。
例2
注意:
二项分布的分布率:
∑
k
=
0
n
P
(
x
=
k
)
=
∑
k
=
0
n
(
n
k
)
P
k
(
1
−
P
)
n
−
k
=
(
P
+
1
−
P
)
n
=
1
\sum _{k = 0} ^{n} P(x = k) = \sum _{k = 0}^{n}{n \choose k} P ^{k} (1-P)^{n-k} = (P + 1 - P)^{n} =1
k=0∑nP(x=k)=k=0∑n(kn)Pk(1−P)n−k=(P+1−P)n=1