仿射变换OpenCV实现的最小二乘优化
本文由 @lonelyrains出品,转载请注明出处。
文章链接: http://blog.csdn.net/lonelyrains/article/details/49865683
// opencv中关于仿射变换的实现代码:
cv::Mat cv::getAffineTransform( const Point2f src[], const Point2f dst[] )
{
Mat M(2, 3, CV_64F), X(6, 1, CV_64F, M.ptr())
double a[6*6], b[6]
Mat A(6, 6, CV_64F, a), B(6, 1, CV_64F, b)
for( int i = 0
{
int j = i*12
int k = i*12+6
a[j] = a[k+3] = src[i].x
a[j+1] = a[k+4] = src[i].y
a[j+2] = a[k+5] = 1
a[j+3] = a[j+4] = a[j+5] = 0
a[k] = a[k+1] = a[k+2] = 0
b[i*2] = dst[i].x
b[i*2+1] = dst[i].y
}
solve( A, B, X )
return M
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
本函数只接受三个点的仿射变换,并不能处理样本点超过三个点、需要用最小二乘来找最接近的仿射变换的方式,所以笔者修改了本函数的实现,重新定义了一个如下:
cv::Mat myGetAffineTransform(const cv::Point2f src[], const cv::Point2f dst[], int m)
{
cv::Mat_<float> X = cv::Mat(m, 3, CV_32FC1, cv::Scalar(0));
cv::Mat_<float> Y = cv::Mat(m, 2, CV_32FC1, cv::Scalar(0));
for (int i = 0; i < m; i++)
{
float x0 = src[i].x, x1 = src[i].y;
float y0 = dst[i].x, y1 = dst[i].y;
X(i, 0) = x0;
X(i, 1) = x1;
X(i, 2) = 1;
Y(i, 0) = y0;
Y(i, 1) = y1;
}
cv::Mat_<float> F = (X.t()*X).inv()*(X.t()*Y);
return F.t();
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
本实现是基于最小二乘的正规矩阵方法求解。正好与之前的一篇机器学习的文章呼应。可以参考:机器学习(四)正规方程求解线性回归问题、正规方法与梯度法的优劣