2021-水下光学目标检测智能算法赛

该博客介绍了使用YOLOV4进行水下目标检测的实践,通过图像增强提升模型性能。作者对原始数据集进行了处理,删除了水草类别,保留了海参、海胆、扇贝和海星四类。使用cascade_rcnn_r50_fpn训练增强后的数据集,并展示了处理前后测试集的对比以及线上得分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先看看原始数据集:

1、直接拿原始数据训练,YOLOV4  线上:

经过图像增强的视觉效果:

采用cascade_rcnn_r50_fpn训练图像增强后的数据集,并删除数据集中水草“waterweeds”这一类别,保留,海参“holothurian”海胆“echinus”扇贝“scallop”海星“starfish”四类。

处理前的测试集:

处理后的测试集:

线上分数:

评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值