PaddleOCR训练自己的数据

一 、数据准备

采用PPOCRLabel标注自己的数据

PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置PP-OCR模型对数据自动标注和重新识别。使用Python3和PyQT5编写,支持矩形框标注和四点标注模式,导出格式可直接用于PaddleOCR检测和识别模型的训练。

 

1.1 安装PaddlePaddle

pip3 install --upgrade pip

# 如果您的机器安装的是CUDA9或CUDA10,请运行以下命令安装
python3 -m pip install paddlepaddle-gpu -i https://mirror.baidu.com/pypi/simple

# 如果您的机器是CPU,请运行以下命令安装
python3 -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple

更多的版本需求,请参照安装文档中的说明进行操作。

1.2 安装与运行PPOCRLabel

PPOCRLabel可通过whl包与Python脚本两种方式启动,whl包形式启动更加方便,python脚本启动便于二次开发

1.2.1 通过whl包安装与运行

Windows

pip install PPOCRLabel  # 安装
PPOCRLabel --lang ch  # 运行

注意:通过whl包安装PPOCRLabel会自动下载 paddleocr whl包,其中shapely依赖可能会出现 [winRrror 126] 找不到指定模块的问题。 的错误,建议从这里下载并安装

Ubuntu Linux

pip3 install PPOCRLabel
pip3 install trash-cli
PPOCRLabel --lang ch

MacOS

pip3 install PPOCRLabel
pip3 install opencv-contrib-python-headless==4.2.0.32 # 如果下载过慢请添加"-i https://mirror.baidu.com/pypi/simple"
PPOCRLabel --lang ch # 启动

如果上述安装出现问题,可以参考3.6节 错误提示

1.2.2 本地构建whl包并安装

cd PaddleOCR/PPOCRLabel
python3 setup.py bdist_wheel 
pip3 install dist/PPOCRLabel-1.0.0-py2.py3-none-any.whl -i https://mirror.baidu.com/pypi/simple

1.2.3 通过Python脚本运行PPOCRLabel

如果您对PPOCRLabel文件有所更改,通过Python脚本运行会更加方面的看到更改的结果

cd ./PPOCRLabel  # 切换到PPOCRLabel目录
python PPOCRLabel.py --lang ch

2. 使用

2.1 操作步骤

  1. 安装与运行:使用上述命令安装与运行程序。
  2. 打开文件夹:在菜单栏点击 “文件” - "打开目录" 选择待标记图片的文件夹[1].
  3. 自动标注:点击 ”自动标注“,使用PPOCR超轻量模型对图片文件名前图片状态[2]为 “X” 的图片进行自动标注。
  4. 手动标注:点击 “矩形标注”(推荐直接在英文模式下点击键盘中的 “W”),用户可对当前图片中模型未检出的部分进行手动绘制标记框。点击键盘Q,则使用四点标注模式(或点击“编辑” - “四点标注”),用户依次点击4个点后,双击左键表示标注完成。
  5. 标记框绘制完成后,用户点击 “确认”,检测框会先被预分配一个 “待识别” 标签。
  6. 重新识别:将图片中的所有检测画绘制/调整完成后,点击 “重新识别”,PPOCR模型会对当前图片中的所有检测框重新识别[3]。
  7. 内容更改:双击识别结果,对不准确的识别结果进行手动更改。
  8. 确认标记:点击 “确认”,图片状态切换为 “√”,跳转至下一张。
  9. 删除:点击 “删除图像”,图片将会被删除至回收站。
  10. 导出结果:用户可以通过菜单中“文件-导出标记结果”手动导出,同时也可以点击“文件 - 自动导出标记结果”开启自动导出。手动确认过的标记将会被存放在所打开图片文件夹下的Label.txt中。在菜单栏点击 “文件” - "导出识别结果"后,会将此类图片的识别训练数据保存在crop_img文件夹下,识别标签保存在rec_gt.txt中[4]。

2.2 注意

[1] PPOCRLabel以文件夹为基本标记单位,打开待标记的图片文件夹后,不会在窗口栏中显示图片,而是在点击 "选择文件夹" 之后直接将文件夹下的图片导入到程序中。

[2] 图片状态表示本张图片用户是否手动保存过,未手动保存过即为 “X”,手动保存过为 “√”。点击 “自动标注”按钮后,PPOCRLabel不会对状态为 “√” 的图片重新标注。

[3] 点击“重新识别”后,模型会对图片中的识别结果进行覆盖。因此如果在此之前手动更改过识别结果,有可能在重新识别后产生变动。

[4] PPOCRLabel产生的文件放置于标记图片文件夹下,包括一下几种,请勿手动更改其中内容,否则会引起程序出现异常。

文件名说明
Label.txt检测标签,可直接用于PPOCR检测模型训练。用户每确认5张检测结果后,程序会进行自动写入。当用户关闭应用程序或切换文件路径后同样会进行写入。
fileState.txt图片状态标记文件,保存当前文件夹下已经被用户手动确认过的图片名称。
Cache.cach缓存文件,保存模型自动识别的结果。
rec_gt.txt识别标签。可直接用于PPOCR识别模型训练。需用户手动点击菜单栏“文件” - "导出识别结果"后产生。
crop_img

识别数据。按照检测框切割后的图片。与rec_gt.txt同时产生。

 二、开始训练

配置文件介绍如下:

Global:
  ...
  # 添加自定义字典,如修改字典请将路径指向新字典
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  # 修改字符类型
  character_type: ch
  ...
  # 识别空格
  use_space_char: True


Optimizer:
  ...
  # 添加学习率衰减策略
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data/
    # 训练集标签文件
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # 修改 image_shape 以适应长文本
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # 单卡训练的batch_size
    batch_size_per_card: 256
    ...

Eval:
  dataset:
    # 数据集格式,支持LMDBDataSet以及SimpleDataSet
    name: SimpleDataSet
    # 数据集路径
    data_dir: ./train_data
    # 验证集标签文件
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # 修改 image_shape 以适应长文本
          image_shape: [3, 32, 320]
      ...
  loader:
    # 单卡验证的batch_size
    batch_size_per_card: 256
    ...

开始训练:

如果您安装的是cpu版本,请将配置文件中的 use_gpu 字段修改为false

# GPU训练 支持单卡,多卡训练,通过--gpus参数指定卡号
# 训练icdar15英文数据 训练日志会自动保存为 "{save_model_dir}" 下的train.log
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml

评估

评估数据集可以通过 configs/rec/rec_icdar15_train.yml 修改Eval中的 label_file_path 设置。

# GPU 评估, Global.checkpoints 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accur

 

训练引擎的预测

使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。

默认预测图片存储在 infer_img 里,通过 -o Global.checkpoints 指定权重:

# 预测英文结果
python3 tools/infer_rec.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.png

预测图片:

得到输入图像的预测结果:

infer_img: doc/imgs_words/en/word_1.png
        result: ('joint', 0.9998967)

预测使用的配置文件必须与训练一致,如您通过 python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml 完成了中文模型的训练, 您可以使用如下命令进行中文模型预测。

# 预测中文结果
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg

预测图片:

得到输入图像的预测结果:

infer_img: doc/imgs_words/ch/word_1.jpg
        result: ('韩国小馆', 0.997218)

服务器端C++预测如下:

https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/deploy/cpp_infer/readme.md

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zyb-小波

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值