凸优化问题
一、优化问题
1.1 基本术语
-
最优点和局部最优点
-
可行性问题
1.2 问题的标准表示
minimize f0(x)
subject to fi(x)<=0, i=1,…,m
hi(x)=0, i=1,…,p
极大化问题
1.3 等价问题
- 变量变换
- 目标函数和约束函数变换
- 松弛变量
- 消除等式约束
- 消除线性等式约束
- 引入等式约束
- 优化部分变量
- 上镜图问题形式
- 隐式与显式约束
二、凸优化
2.1 标准形式
三、线性规划问题
-
线性规划的标准形式和不等式形式
-
将线性规划转换为标准形式
3.1 例子
- 食谱问题
- 多面体chebyshex中心
- 动态活动计划
- Chebyshev不等式
- 分片线性极小化
3.2 线性分式规划
四、二次优化问题
4.1 例子
- 最小二乘及回归
- 多面体距离
- 方差定界
- 关于随机费用的线性规划
- Markowitz投资组合优化
4.2 二阶锥规划
- 鲁棒线性规划
- 随机约束下的线性规划
- 极小表面
五、几何规划
5.1 单项式和正项式
5.2 几何规划
5.3 凸形式的几何规划
5.4 例子
- Frobenius范数的对角化伸缩
- 悬臂梁的设计
- 通过Perron-Frobenius定理极小化谱半径