双目三维重建———基本概念介绍
生成三维点云是计算机视觉和机器人领域中的一个重要任务,尤其是在环境建模和深度感知方面。双目相机,利用两个平行摆放的相机模拟人类的双眼视觉,可以通过计算两个相机视图间的视差来重建三维空间信息。这里将为你介绍如何使用双目相机生成三维点云的基本原理和步骤。
双目相机系统介绍
双目相机系统包括两个同型号的相机,它们被固定在一定的距离(基线距离)上,且相机的光轴平行对齐。这种布局使得每个相机捕获到的场景图像存在视差,即同一物体在两个相机视图中的位置存在水平位移。利用这种视差,可以计算物体到相机的距离。
图像预处理的目标
图像预处理的主要目的是提高图像质量,减少图像之间的畸变差异,确保后续视差计算的准确性。这包括去噪声、灰度化、增强对比度以及图像校正。
1. 去噪声
去噪声是预处理的第一步,目的是减少图像捕获和传输过程中引入的随机噪声。常用的去噪技术有高斯平滑、中值滤波或双边滤波。这些滤波技术可以帮助平滑图像,减少噪点,而不会过度模糊图像中的重要特征。
2. 灰度转换
由于颜色信息在计算视差时并不总是必需的,将彩色图像转换为灰度图像可以简化数据处理的复杂性。灰度化也有助于统一图像数据格式,使得后续的处理更加高效。
3. 增强对比度
对比度增强可以改善图像的视觉效果,使得图像中的对象边界更加清晰。常用的方法包括直方图均衡化或自适应直方图均衡化,这些方法可以优化图像的亮度分布,突出重要的视觉特征。
4. 图像校正(立体校正)
图像校正是一个关键步骤,旨在确保来自两个相机的图像在同一视平面上对齐,这样可以直接比较它们以计算视差。
校正步骤:
- 摄像机标定:首先进行摄像机标定以获取摄像机的内参(如焦距、主点)和外参(如旋转和平移矩阵)。这可以通过拍摄已知图案的标定板(如棋盘格)来完成。
- 计算重投影矩阵:使用内参和外参,计算两个摄像头视图之间的几何关系,进而生成重投影矩阵。这一步骤是为了将两个视图转换到共同的平面上。
- 应用重投影:将重投影矩阵应用于原始图像,以确保两个相机拍摄的图像行对齐。这意味着对应的图像点将出现在两个图像的同一行上。
- 修正畸变:校正图像畸变,特别是镜头引起的径向畸变和切向畸变。
径向畸变校正
径向畸变会使图像呈现放射状弯曲,尤其是边缘部分。其校正公式通常表示为:
x corrected = x distorted ( 1 + k 1 r 2 + k 2 r 4 + k 3 r 6 ) x_{\text{corrected}} = x_{\text{distorted}} (1 + k_1 r^2 + k_2 r^4 + k_3 r^6) xcorrected=xdistorted(1+k1r2+k2r4+k3r6)
y corrected = y distort