从Maxwell方程组到波动方程

Maxwell方程组是十九世纪最伟大的公式,代表了传统物理学人对公式美学的孜孜追求,也影响了无数后来者的物理美学品味。

回顾历史,当1864年,Maxwell发出那篇著名的《电磁场的动力学理论》时,实则列出了二十个公式,以总结前人的物理学成果,我们将分量公式合并为矢量,可以得到八个式子,即

名称公式物理意义
总电流定律 J t o t = J + ∂ D ∂ t \bold J_{tot}=\bold J+\frac{\partial\bold D}{\partial t} Jtot=J+tD总电流等于传导电流加位移电流
磁场方程 μ H = ∇ × A \mu\bold H=\nabla\times\bold A μH=×A磁场强度为矢势的旋度
安培环路定理 ∇ × H = J t o t \nabla\times\bold H=\bold J_{tot} ×H=Jtot变化磁场产生电流
洛伦兹力 E = μ v × H − ∂ A ∂ t − ∇ ϕ \bold E=\mu\bold v\times\bold H-\frac{\partial\bold A}{\partial t}-\nabla\phi E=μv×HtAϕ磁场中运动电荷产生指向法线方向的力
电弹性方程 E = 1 ϵ D \bold E=\frac{1}{\epsilon}\bold D E=ϵ1D场强和电位移矢量的关系
欧姆定律 E = 1 σ J \bold E=\frac{1}{\sigma}\bold J E=σ1J电流和电势的关系
高斯定律 ∇ ⋅ D = ρ \nabla\cdot\bold D=\rho D=ρ电荷产生电场
连续性方程 ∇ ⋅ J = − ∂ ρ ∂ t \nabla\cdot\bold J=-\frac{\partial\rho}{\partial t} J=tρ电荷变化产生传导电流

以上符号分别表示

符号物理意义符号物理意义
H \bold H H磁场强度 D \bold D D电位移矢量
E \bold E E电场强度
J \bold J J传导电流密度 ρ \rho ρ自由电荷密度
J t o t \bold J{tot} Jtot总电流密度
A \bold A A矢量势 ϕ \phi ϕ标势
μ \mu μ磁导率 σ \sigma σ电导率
ϵ \epsilon ϵ电容率

二十年后,Heaviside对这二十个公式进行重新编排,得到了我们熟悉的形式,并将其命名为麦克斯韦方程组:

∇ × E = − ∂ B ∂ t ∇ × H = J + ∂ D ∂ t ∇ ⋅ D = ρ ∇ ⋅ B = 0 \begin{aligned} \nabla\times\bold E&=-\frac{\partial\bold B}{\partial t}\\ \nabla\times\bold H&=\bold J+\frac{\partial\bold D}{\partial t}\\ \nabla\cdot\bold D&=\rho\\ \nabla\cdot\bold B&=0\\ \end{aligned} ×E×HDB=tB=J+tD=ρ=0

D , B , J \bold D, \bold B, \bold J D,B,J的定义,则作为物质方程而存在

D = ε 0 E + P = ε 0 ε E = ε E B = μ H = μ 0 H = μ 0 ( H + M ) J = σ E \begin{aligned} &\bold D = \varepsilon_0\bold E+\bold P=\varepsilon_0\varepsilon\bold E=\varepsilon E\\ &\bold B = \mu H = \mu_0\bold H =\mu_0(\bold H+\bold M)\\ &\bold J = \sigma\bold E \end{aligned} D=ε0E+P=ε0εE=εEB=μH=μ0H=μ0(H+M)J=σE

其中, P \bold P P为介质在外场作用下的电极化强度矢量; M \bold M M为磁化强度矢量。

对于真空而言, ε = ε 0 , μ = μ 0 \varepsilon=\varepsilon_0,\mu=\mu_0 ε=ε0,μ=μ0皆为标量,且真空中点电荷与电流均为0,所以可以进一步写为

∇ × E = − ∂ B ∂ t ∇ ⋅ D = 0 ∇ × B = ε 0 μ 0 ∂ E ∂ t ∇ ⋅ B = 0 \begin{aligned} \nabla\times\bold E&=-\frac{\partial\bold B}{\partial t}\quad&\nabla\cdot\bold D = 0\\ \nabla\times\bold B &= \varepsilon_0\mu_0\frac{\partial\bold E}{\partial t}\quad&\nabla\cdot\bold B=0 \end{aligned} ×E×B=tB=ε0μ0tED=0B=0

对上式中左侧两个旋度公式再取旋度,得到

∇ × ( ∇ × E ) = − ∂ ∂ t ( ∇ × B ) = − ε 0 μ 0 ∂ 2 E ∂ t 2 ∇ × ( ∇ × B ) = ε 0 μ 0 ∂ ∂ t ( ∇ × E ) = − ε 0 μ 0 ∂ 2 B ∂ t 2 \begin{aligned} \nabla\times(\nabla\times\bold E)=-\frac{\partial}{\partial t}(\nabla\times\bold B)=-\varepsilon_0\mu_0\frac{\partial^2\bold E}{\partial t^2}\\ \nabla\times(\nabla\times\bold B)=\varepsilon_0\mu_0\frac{\partial}{\partial t}(\nabla\times\bold E)=-\varepsilon_0\mu_0\frac{\partial^2\bold B}{\partial t^2}\\ \end{aligned} ×(×E)=t(×B)=ε0μ0t22E×(×B)=ε0μ0t(×E)=ε0μ0t22B

很多人对矢量的计算方法不太熟悉,所以下面着重推导一下 ∇ × ( ∇ × E ) \nabla\times(\nabla\times\bold E) ×(×E)。通过上标来表示空间分量,下标表示对空间坐标的导数,例如记空间矢量 r ⇀ = ( r x , r y , r z ) \overrightharpoon{r}=(r^x,r^y,r^z) r =(rx,ry,rz),场强 E = ( E x , E y , E z ) \bold E=(E^x,E^y,E^z) E=(Ex,Ey,Ez),记 ∂ E x ∂ y = E y x \frac{\partial E^x}{\partial y}=E^x_y yEx=Eyx,则

∇ × ( ∇ × E ) = ∇ × [ n x ⇀ n y ⇀ n z ⇀ ∂ ∂ x ∂ ∂ y ∂ ∂ z E x E y E z ] = ∇ × [ E y z − E z y , − ( E x z − E z x ) , E x y − E y x ] = [ n x ⇀ n y ⇀ n z ⇀ ∂ ∂ x ∂ ∂ y ∂ ∂ z E y z − E z y E z x − E x z E x y − E y x ] = [ ( E x y y − E y y x ) − ( E z z x − E x z z ) − [ ( E x x y − E y x x ) − ( E y z z − E z z y ) ] ( E z x x − E x x z ) − ( E y y z − E z y y ) ] T = − [ E z z x + E y y x + E x x x E z z y + E x x y + E y y y E z z z + E y y z + E x x z ] T + [ E x x x + E y x y + E x z z E y y y + E x y x + E y z z E x z x + E y z y + E z z z ] T = − ∇ 2 E + ∇ ( ∇ ⋅ E ) \begin{aligned} \nabla\times(\nabla\times\bold E)&=\nabla\times \begin{bmatrix} \overrightharpoon{n^x}&\overrightharpoon{n^y}&\overrightharpoon{n^z}\\ \frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\ E^x&E^y&E^z \end{bmatrix}\\ &=\nabla\times[E^z_y-E^y_z,-(E^z_x-E^x_z),E^y_x-E^x_y]\\ &=\begin{bmatrix} \overrightharpoon{n^x}&\overrightharpoon{n^y}&\overrightharpoon{n^z}\\ \frac{\partial}{\partial x}&\frac{\partial}{\partial y}&\frac{\partial}{\partial z}\\ E^z_y-E^y_z&E^x_z-E^z_x&E^y_x-E^x_y\\ \end{bmatrix}\\ &=\begin{bmatrix} (E^y_{xy}-E^x_{yy})-(E^x_{zz}-E^z_{xz})\\ -[(E^y_{xx}-E^x_{yx})-(E^z_{yz}-E^y_{zz})]\\ (E^x_{zx}-E^z_{xx})-(E^z_{yy}-E^y_{zy}) \end{bmatrix}^T\\ &=-\begin{bmatrix} E^x_{zz}+E^x_{yy}+E^x_{xx}\\ E^y_{zz}+E^y_{xx}+E^y_{yy}\\ E^z_{zz}+E^z_{yy}+E^z_{xx} \end{bmatrix}^T+\begin{bmatrix} E^x_{xx}+E^y_{yx}+E^z_{xz}\\ E^y_{yy}+E^x_{xy}+E^z_{yz}\\ E^x_{xz}+E^y_{yz}+E^z_{zz}\\ \end{bmatrix}^T\\ &=-\nabla^2\bold E+\nabla(\nabla\cdot\bold E) \end{aligned} ×(×E)=×nx xExny yEynz zEz=×[EyzEzy,(ExzEzx),ExyEyx]=nx xEyzEzyny yEzxExznz zExyEyx=(ExyyEyyx)(EzzxExzz)[(ExxyEyxx)(EyzzEzzy)](EzxxExxz)(EyyzEzyy)T=Ezzx+Eyyx+ExxxEzzy+Exxy+EyyyEzzz+Eyyz+ExxzT+Exxx+Eyxy+ExzzEyyy+Exyx+EyzzExzx+Eyzy+EzzzT=2E+(E)

其中, ∇ E = 0 \nabla\bold E=0 E=0,所以可得到波动方程

( ∇ 2 − ε 0 μ 0 ∂ 2 ∂ t 2 ) E = 0 ( ∇ 2 − ε 0 μ 0 ∂ 2 ∂ t 2 ) B = 0 \begin{aligned} (\nabla^2-\varepsilon_0\mu_0\frac{\partial^2}{\partial t^2})\bold E=0\\ (\nabla^2-\varepsilon_0\mu_0\frac{\partial^2}{\partial t^2})\bold B=0\\ \end{aligned} (2ε0μ0t22)E=0(2ε0μ0t22)B=0

c = 1 ε 0 μ 0 c=\frac{1}{\sqrt{\varepsilon_0\mu_0}} c=ε0μ0 1,并定义达朗贝尔算子 □ = − 1 c 2 ∂ 2 ∂ t 2 + ∇ 2 \square=-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}+\nabla^2 =c21t22+2,则波动方程可以写为

□ B = 0 , □ E = 0 \square\bold B=0,\square\bold E=0 B=0,E=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值