win10+MX350显卡+CUDA10.2+PyTorch 安装过程记录 深度学习环境配置

本文详细介绍了在联想小新15 2020笔记本上,配备MX350显卡和i5-1035G CPU的环境下,如何从零开始安装CUDA 10.2、cuDNN v7.6.5以及PyTorch GPU版本的全过程。包括确认显卡型号、下载安装CUDA、配置环境变量、安装cuDNN以及通过Anaconda Prompt安装PyTorch的步骤,并提供了安装后的验证方法和简单的GPU性能测试结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境配置预览

联想小新15 2020 笔记本

系统CPUGPUCUDAcuDNNPyTorch
win10i5-1035GMX350显存2GB10.2v7.6.51.5

1. 安装CUDA

  1. 确认计算机的显卡型号:在设备管理器中查看GPU的型号,前提是你的计算机要有独显

在这里插入图片描述
2. 确定显卡支持的CUDA版本:打开英伟达控制面板→帮助→系统信息→组件,查看CUDA版本

在这里插入图片描述
在这里插入图片描述
3. 英伟达官网下载对应的CUDA版本。我下载的版本是CUDA10.2

+
选择CUDA的安装环境,安装类型我这里以 在线安装(network)为例
在这里插入图片描述
4. 安装CUDA:双击执行下载的exe文件,会先解压文件到临时目录(不是安装目录),保持默认即可

在这里插入图片描述
5. 安装过程:选择自定义

在这里插入图片描述
取消勾选 Visual Studio Integration

在这里插入图片描述
建议默认安装在C盘这三个路径很重要,需要记住,后面配置环境变量以及安装cuDNN要用到在这里插入图片描述
刚开始一直在0%得等一会,我的安装过程大概是15min(因为是在线安装较慢)
在这里插入图片描述

在这里插入图片描述
6. 配置CUDA的环境变量

7.
在Path中手动添加如下路径:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\CUPTI\lib64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\bin\win64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\common\lib\x64

在这里插入图片描述
7. 验证CUDA是否安装成功
在这里插入图片描述

2. 安装cuDNN

英伟达官网下载与CUDA对应的cuDNN,我这里下载的版本是 cuDNN v7.6.5。

注意:需要先注册账号,填写个人信息及简单的调查文件后才能下载,一步一步来即可。

在这里插入图片描述
下载之后,解压缩,将CUDNN文件夹里面的bin、include、lib文件直接复制到CUDA的安装目录下,直接覆盖安装即可。

3. 安装PyTorch

请事先安装好 Anaconda3,到 PyTorch官网选择安装

在这里插入图片描述
在 Anaconda Prompt 输入上述指令,进行PyTorch安装,此过程时间较长,需耐心等待。(我大概用了40min)

在这里插入图片描述
在这里插入图片描述
测试安装是否成功,可以正常打印出版本号,安装没问题。
并测试能否用GPU加速,返回True。

import torch
print(torch.__version__)
print(torch.cuda.is_available())

在这里插入图片描述

4. GPU速度简单测试

拿AlexNet简单测试了下MX350的速度,测试时CPU满载,GPU只达到了50%

GPU(MX350)CPU(i5-1035G)
跑完一次数据集耗时22s73s

参考:
win10下pytorch-gpu安装以及CUDA详细安装过程
Win10+MX250+CUDA10.1+cuDNN+Pytorch1.4安装+测试全过程

安装CUDA需要按照以下步骤进行操作。首先,确认你的显卡nvidia独立显卡,然后检查并更新你的驱动版本。接下来,查看你的CUDA版本,可以通过NVIDIA控制面板进行查看。根据你的CUDA版本,前往NVIDIA官方网站下载相应的CUDAPyTorch版本。如果你遇到了安装失败的问题,有几个可能的原因。首先,你的版本可能不再被支持,你可以在PyTorch官方网站上查看Windows是否支持你的CUDA版本。其次,可能是CUDA版本PyTorch版本不兼容。你可以尝试重新安装相应版本CUDAPyTorch进行解决。如果你的显卡MX450,你可以前往NVIDIA官方网站的CUDA下载页面,选择适合你的操作系统和显卡型号的CUDA版本进行下载。希望以上信息能对你有所帮助。1<em>2</em>3 #### 引用[.reference_title] - *1* *2* [【联想小新air14 MX450】安装cudapytorch版本问题](https://blog.csdn.net/qq_63697375/article/details/127227486)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item] - *3* [安装PyTorch-GPU版本+CUDA+CUDNN+Win10(显卡GeForce MX450)+Anaconda(最新版)](https://blog.csdn.net/weixin_44412076/article/details/109571918)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item] [ .reference_list ]
评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值