环境配置预览
联想小新15 2020 笔记本
系统 | CPU | GPU | CUDA | cuDNN | PyTorch |
---|---|---|---|---|---|
win10 | i5-1035G | MX350显存2GB | 10.2 | v7.6.5 | 1.5 |
1. 安装CUDA
- 确认计算机的显卡型号:在设备管理器中查看GPU的型号,前提是你的计算机要有独显
2. 确定显卡支持的CUDA版本:打开英伟达控制面板→帮助→系统信息→组件,查看CUDA版本
3. 到英伟达官网下载对应的CUDA版本。我下载的版本是CUDA10.2
选择CUDA的安装环境,安装类型我这里以 在线安装(network)为例
4. 安装CUDA:双击执行下载的exe文件,会先解压文件到临时目录(不是安装目录),保持默认即可
5. 安装过程:选择自定义
取消勾选 Visual Studio Integration
建议默认安装在C盘 。 这三个路径很重要,需要记住,后面配置环境变量以及安装cuDNN要用到
刚开始一直在0%得等一会,我的安装过程大概是15min(因为是在线安装较慢)
6. 配置CUDA的环境变量
在Path中手动添加如下路径:
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\CUPTI\lib64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\bin\win64
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.2\common\lib\x64
7. 验证CUDA是否安装成功
2. 安装cuDNN
到英伟达官网下载与CUDA对应的cuDNN,我这里下载的版本是 cuDNN v7.6.5。
注意:需要先注册账号,填写个人信息及简单的调查文件后才能下载,一步一步来即可。
下载之后,解压缩,将CUDNN文件夹里面的bin、include、lib文件直接复制到CUDA的安装目录下,直接覆盖安装即可。
3. 安装PyTorch
请事先安装好 Anaconda3,到 PyTorch官网选择安装
在 Anaconda Prompt 输入上述指令,进行PyTorch安装,此过程时间较长,需耐心等待。(我大概用了40min)
测试安装是否成功,可以正常打印出版本号,安装没问题。
并测试能否用GPU加速,返回True。
import torch
print(torch.__version__)
print(torch.cuda.is_available())
4. GPU速度简单测试
拿AlexNet简单测试了下MX350的速度,测试时CPU满载,GPU只达到了50%
GPU(MX350) | CPU(i5-1035G) | |
---|---|---|
跑完一次数据集耗时 | 22s | 73s |
参考:
win10下pytorch-gpu安装以及CUDA详细安装过程
Win10+MX250+CUDA10.1+cuDNN+Pytorch1.4安装+测试全过程