决策树是一种机器学习领域的分类方法,首先通过训练集来构建决策树,并在测试集上使用决策树对测试数据进行分类。本文主要讲解对各结点的纯度计算方法。
要确定决策树的根结点,要对不同属性进行纯度计算。主要有两种计算方法。
1. Gini
公式:
是指在结点t的相对频率。
例如,某一属性按照C1,C2两类的分类情况如下:
C1 | 0 |
C2 | 6 |
对于这种情况,使用上述公式可得:
决策树是一种机器学习领域的分类方法,首先通过训练集来构建决策树,并在测试集上使用决策树对测试数据进行分类。本文主要讲解对各结点的纯度计算方法。
要确定决策树的根结点,要对不同属性进行纯度计算。主要有两种计算方法。
公式:
是指在结点t的相对频率。
例如,某一属性按照C1,C2两类的分类情况如下:
C1 | 0 |
C2 | 6 |
对于这种情况,使用上述公式可得: