decision tree的结点纯度计算方法

本文探讨了决策树中用于衡量结点纯度的两种方法——Gini指数和熵。通过计算公式,解释了如何确定根结点以及如何评估属性的纯度。纯度越高,表示结点分类的确定性越强,适合作为划分依据。当概率相等时,纯度最低,而概率趋向0或1时,纯度最高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

决策树是一种机器学习领域的分类方法,首先通过训练集来构建决策树,并在测试集上使用决策树对测试数据进行分类。本文主要讲解对各结点的纯度计算方法。

要确定决策树的根结点,要对不同属性进行纯度计算。主要有两种计算方法。

1. Gini

公式:\mathit{GINI(t)} = 1-\sum[\mathit{p}(j|t)]^{2}

\mathit{p}(j|t)是指在结点t的相对频率。

例如,某一属性按照C1,C2两类的分类情况如下:

C1 0
C2

6

  对于这种情况,使用上述公式可得:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值