关于Beta分布

转自知乎:如何通俗理解Beta分布
Beta分布可以看做是分布之上的分布。我们还是以抛硬币为例。不过,我们并不假设硬币是均匀的(也就是说:并不假设每次抛硬币,正面朝上的概率为0.5),所以抛硬币的正面朝上的概率p是未知的(只知道p∈[0,1])。如果进行一次二项分布试验,在这次二项分布试验中,抛硬币10000次,其中正面朝上7000次,反面朝上3000次,我们可以得到,正负面朝上的概率分别为{p,1-p}={0.7,0.3}。但是我们并不确信这个结果是正确的。我们想要做10000次二项分布试验,在每次二项分布试验中,均抛硬币10000次(说不定在其他二项分布实验中,得到的正负面朝上的概率是{0.2,0.8}或者{0.6,0.4},这些情况都有可能),那么,我们想要知道,在这样的多次重复二项分布实验中,抛硬币最后得到正负面朝上概率为{0.7,0.3}这样概率为多少?这就是在求抛硬币的概率分布之上的分布。这样的分布就叫做Beta分布。


作者:知乎用户
链接:https://www.zhihu.com/question/30269898/answer/272901048
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

在原文之中还提供了一个链接:

http://arthur503.github.io/blog/2013/11/17/ML-Bornuli-Binary-Beta-Multinominal-Dirichlet-Distribution.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值