建立ubuntu1604环境

本文介绍如何在Ubuntu1604中搭建开发环境,包括安装RIME输入法、pip3、仅安装QtDesigner以供PyQt5使用、解决复制粘贴问题等,并解释了相对路径的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

建立ubuntu1604运行环境

(1)安装RIME

首先更新和安装

sudo apt update
sudo apt upgrade
sudo apt install ibus-rime

然后设置

ibus-setup

最后重启系统

(2)安装pip3

sudo apt install python3-pip

如果安装有问题下载对应版本的文件

wget https://bootstrap.pypa.io/pip/3.5/get-pip.py

更新pip3

python3 get-pip.py

(3)只安装qtdesigner,用于pyqt5

sudo apt install qt5-default qttools5-dev-tools

使用时报错 qt.qpa.plugin: Could not load the Qt platform plugin “xcb“ in ““ even though it was found.则

vim ~/.bashrc

添加export QT_DEBUG_PLUGINS=1,然后将配置使能

source ~/.bashrc

如果仍然存在问题

sudo apt-get install libxcb*
sudo apt-get install libxkbcommon*

(4)无法与宿主机间复制粘贴

sudo apt upgrade
sudo apt install open-vm-tools-desktop -y
sudo reboot

(5)相对路径

“./” 代表当前目录
“../”代表上层目录
"../../"代表上上层目录,是两个../叠在一起,并没有使用.../
这是一个简单的基于树莓派的人脸表情识别代码,使用OpenCV和Keras库实现。请注意,此代码仅供参考,您需要根据实际情况进行修改。 ```python import cv2 import numpy as np from keras.models import load_model # 加载人脸识别模型 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 加载表情识别模型 model = load_model('emotion_detection_model.h5') # 定义表情标签 emotion_labels = ['Angry', 'Disgust', 'Fear', 'Happy', 'Neutral', 'Sad', 'Surprise'] # 打开树莓派摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头数据 ret, frame = cap.read() # 转换为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 遍历每个人脸并进行表情识别 for (x, y, w, h) in faces: # 提取人脸图像 face = gray[y:y+h, x:x+w] # 调整大小为48x48像素 face = cv2.resize(face, (48, 48)) # 归一化像素值 face = face / 255.0 # 转换为4D张量 face = np.expand_dims(face, axis=0) face = np.expand_dims(face, axis=-1) # 进行表情预测 predictions = model.predict(face) # 获取最大概率的表情标签 label = emotion_labels[np.argmax(predictions)] # 在图像上绘制人脸和表情标签 cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.putText(frame, label, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) # 显示结果 cv2.imshow('Face Emotion Detection', frame) # 按q键退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头并关闭窗口 cap.release() cv2.destroyAllWindows() ``` 请注意,上述代码只是一个示例,您需要根据实际情况进行修改,比如修改人脸识别和表情识别模型的路径、调整人脸检测参数和表情标签等。此外,也需要注意摄像头的调用和权限,以免出现问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值