概率图模型2(马尔科夫网络)

马尔科夫网络属于无向图模型
在这里插入图片描述
条件独立性体现在三个方面:
条 件 独 立 性 : { 全 局 : X A ⊥ X B ∣ X C 局 部 : x i ⊥ x i − n b ∣ x n b 给 定 x i 的 邻 居 x n b 情 况 下 , x i 独 立 于 x i 的 非 邻 居 成 对 : x i ⊥ x j ∣ x − i , j 给 定 所 有 非 x i 和 x j 情 况 下 , x i 独 立 于 x j 条件独立性: \begin{cases} 全局:\quad X_A \bot X_B |X_C\\ 局部: \quad x_i \bot x_{i-nb}|x_{nb} 给定x_i的邻居x_{nb}情况下,x_i独立于x_i的非邻居 \\ 成对: \quad x_i \bot x_j|x_{-i,j} 给定所有非x_i和x_j情况下,x_i独立于x_j \end{cases} XAXBXCxixinbxnbxixnbxixixixjxi,jxixjxixj
三个方面可以相互转换

全 局 < < = = > > 局 部 < < = = > > 成 对 全局<<==>>局部<<==>>成对 <<==>><<==>>

团和最大团的概念:
团:两两相连的节点叫做团
最大团:不能再添加任何节点的团叫做最大团
在这里插入图片描述
比如上图中 ( x 1 , x 2 ) , ( x 1 , x 3 ) ( x 1 , x 2 , x 3 ) , ( x 2 , x 3 , x 4 ) (x_1,x_2),(x_1,x_3)(x_1,x_2,x_3),(x_2,x_3,x_4) (x1,x2),(x1,x3)(x1,x2,x3),(x2,x3,x4)都叫团,其中 ( x 1 , x 2 , x 3 ) , ( x 2 , x 3 , x 4 ) (x_1,x_2,x_3),(x_2,x_3,x_4) (x1,x2,x3),(x2,x3,x4)
是最大团

接下来我们可以顺利讨论怎么分解因子写出来联合概率了,但是由于公式看着理解比较棘手,我们先看一个具体的例子算式,这样有助于我们理解公式
在这里插入图片描述
此图包含三个最大团
C 1 = ( x 1 , x 2 , x 3 ) , C 2 = ( x 3 , x 4 ) , C 3 = ( x 3 , x 5 ) C_1=(x_1,x_2,x_3),C_2=(x_3,x_4),C_3=(x_3,x_5) C1=(x1,x2,x3),C2=(x3,x4),C3=(x3,x5)

那么此马尔科夫网络的联合概率分布可以写为:
p ( x 1 , x 2 , x 3 , x 4 , x 5 ) = 1 Z ψ ( X C 1 ) ψ ( X C 2 ) ψ ( X C 3 ) = 1 Z ψ ( x 1 , x 2 , x 3 ) ψ ( x 3 , x 4 ) ψ ( x 3 , x 5 ) = 1 Z ∏ ψ ( X C i ) p(x_1,x_2,x_3,x_4,x_5)= \displaystyle \frac{1}{Z} \psi(X_{C_1}) \psi(X_{C_2}) \psi(X_{C_3}) = \displaystyle \frac{1}{Z} \psi(x_1,x_2,x_3) \psi(x_3,x_4) \psi(x_3,x_5) =\displaystyle \frac{1}{Z} \prod \psi(X_{C_i}) p(x1,x2,x3,x4,x5)=Z1ψ(XC1)ψ(XC2)ψ(XC3)=Z1ψ(x1,x2,x3)ψ(x3,x4)ψ(x3,x5)=Z1ψ(XCi)
其中:
Z = ∑ ∏ ψ ( X C i ) = ∑ 1 ∑ 2 ∑ 3 . . . ∑ p ∏ ψ ( X C i ) 叫 做 归 一 化 因 子 Z=\sum \prod \psi(X_{C_i}) = \displaystyle \sum_1\sum_2\sum_3...\sum_p \prod \psi(X_{C_i})叫做归一化因子 Z=ψ(XCi)=123...pψ(XCi)
ψ ( X C i ) 叫 做 势 函 数 , 是 指 数 函 数 \psi(X_{C_i}) 叫做势函数,是指数函数 ψ(XCi)
ψ ( X C i ) = e x p { − E ( X C i ) } , E 表 示 能 量 函 数 \psi(X_{C_i})=exp\{-E(X_{C_i})\},E表示能量函数 ψ(XCi)=exp{E(XCi)},E
比如 ψ ( X C 2 ) = e x p { E ( X C 2 ) } = e x p { − E ( x 3 , x 4 ) } \psi(X_{C_2})=exp\{E(X_{C_2})\}=exp\{-E(x_3,x_4)\} ψ(XC2)=exp{E(XC2)}=exp{E(x3,x4)}

重写无向图联合概率公式:
P ( X ) = 1 Z ∏ i k ψ ( X C i ) P(X)=\displaystyle \frac{1}{Z} \prod_i^k \psi(X_{C_i}) P(X)=Z1ikψ(XCi)

而基于最大团的联合概率和无向图的条件独立性等价,这点由Hammersley-Clifford定理保证

因子图
因子图可以看作是对势函数的进一步分解
在这里插入图片描述
p ( x 1 , x 2 , x 3 ) = ψ ( x 1 , x 2 , x 3 ) p(x_1,x_2,x_3) = \psi(x_1,x_2,x_3) p(x1,x2,x3)=ψ(x1,x2,x3)
因子图的表现形式如下:
在这里插入图片描述
在每个相连的节点间都插入因子节点(函数节点),概率的表现形式如下:
p ( x 1 , x 2 , x 3 ) = f 1 ( x 1 , x 3 ) f 2 ( x 1 , x 2 ) f 3 ( x 2 , x 3 ) p(x_1,x_2,x_3) = f_1(x_1,x_3)f_2(x_1,x_2)f_3(x_2,x_3) p(x1,x2,x3)=f1(x1,x3)f2(x1,x2)f3(x2,x3)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值