1、回归和分类的问题?
比如我们想预测房价,预测天气,预测股票等这些数值都是一些连续型的数值,如果我们想知道我一些房间中有多少个卧室,那么这些肯定是一个整数比如说2个卧室、3个卧室,不可能是2.1个卧室,3.68个卧室,类似于小数的这样一个连续型的数值,这是不符合实际情况的,肯定是不行的,所以类似于这种我们就可以把它叫做一个分类问题;所以回归问题他在数学表示上数值要是连续型的,要预测一个值;而分类问题呢,它是一个离散型的;回归问题常用的算法就是线性回归;分类问题常用算法可能是支持向量机、K邻近距离,朴素贝叶斯。
回归和分类他们解决问题的思路都是一样的,首先我要准备数据,然后去训练模型,如果说这个数据是一个连续型的话,那么我们就认为他是一个回归问题;如果他是离散型的,我们就认为他是分类问题;从更专业的数学专业来说分类和回归:

2、线性回归VS逻辑回归
2.1线性回归
线性回归:能够用一个
本文探讨了线性回归和逻辑回归在回归和分类问题中的应用。线性回归用于连续数值预测,如预测房价,而逻辑回归则是一个分类算法,常用于二分类问题。两者在求解过程中步骤相似,但逻辑回归通过sigmoid函数将线性回归结果转换为0到1概率,从而实现分类。线性回归要求变量服从正态分布,因变量连续;而逻辑回归对变量分布无特定要求,适用于因变量为分类型变量。
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



