kaggle(白嫖免费GPU,新手必看!!!)

本文介绍了如何注册并利用Kaggle平台的免费GPU资源进行深度学习代码的训练,包括注册过程、验证步骤、创建notebook、上传数据和选择GPU加速器。此外,还提到了离线训练和保存模型参数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

跑深度学习代码的时候电脑GPU太垃圾了,batch-size设置的很小,训练时间长?kaggle提供免费GPU啦!!!跟着我一起来白嫖吧

1、第一步:注册登录

kaggle可以使用Google、雅虎、Facebook账号登录,如果你已经有了这些账号直接登录即可。这些账号博主都没有,所以通过邮箱注册登录。

首先进入kaggle主页Kaggle: Your Machine Learning and Data Science Community,点击右上角的register,即可进入下方注册页面。

 点击第二个register with your email,进入注册页面,如下:

当你填完邮箱密码等信息,点击next后,会发现如下提示:

 红色提示显示需要输入验证,但是并没有发现有输入验证的地方,别急,仅需安装一个header editor插件即可。

在浏览器上方找到扩展图标,如下:

点击该扩展图标,点击管理扩展,在寻找更多附加组件处输入header editor

 

找到Header Editor并添加。添加后再次点击扩展图标可以看到该扩展已经被添加进来了。

 点击header editor 会出现以下界面:

点击管理, 选择导入和导出。

 将https://github.azurezeng.com/static/HE-GoogleRedirect.json输入下载规则中,点击下载。

接下来可以看到导入了相关规则:

点击保存即可。

 再次返回kaggle注册界面

 可以看到有了人机注册模块。再依次填写相关信息,并进行人机注册即可。

点击next。

打开邮箱,将验证码填入,填入验证码后即注册成功啦。

2、在notebook中写入自己的代码并使用GPU训练

想要使用GPU需要先验证自己的手机号,点击头像--->account--->Phone Verification,输入手机号验证即可。

验证完手机后就可以使用GPU跑我们自己的深度学习代码啦

点击create创建新的notebook,这里notebook的使用和jupyter notebook很类似。

notebook界面如下:左边的就是编辑代码的文本框,右边提供上传数据,结果保存,以及使用GPU的功能。

 写入自己的代码

我通常是将代码直接复制到代码框,避免导入自定义的文件和类。

上传自己的数据集

在右边功能框的data中找见upload data,如下图:

 将需要上传的文件压缩成压缩文件,上传压缩文件即可,kaggle会自动将压缩文件进行预处理,解压到Input中。

使用GPU训练

同样是在右边的功能框找见Notebook options--->accelerator--->选择GPU P100,如下图所示:

 可以看到,kaggle为每位用户提供每周30h的免费GPU使用时间。

调好代码,上传好数据,就可以使用GPU进行训练啦

3、离线训练自己的代码

由于深度学习代码往往需要很长的训练时间,长时间线上训练可能会出现内核挂掉的情况,所以我们可以选择离线训练自己的模型,最后下载相关模型参数文件即可。

将自己的代码调试无错后,点击右上角save version

 点击保存,代码就可以离线训练了。

 

点击左下角离线运行的代码,我们可以随时查看他的log信息,查看训练过程中的输出信息。

至此,我们就用上了白嫖的GPU啦

 推荐博客:reCaptcha人机验证无法显示和CSP问题解决方案 – Azure Zeng Blog

Kaggle 是一个数据科学和机器学习社区平台,提供了丰富的数据集、竞赛和教程资源。下面是一个简单的 Kaggle 使用教程: 1. 注册一个 Kaggle 账号:访问 Kaggle 官网(https://www.kaggle.com/)并点击右上角的 "Sign Up" 进行注册。 2. 探索数据集:在 Kaggle 上有数千个开放的数据集可供使用。你可以通过搜索或浏览不同的领域和主题来找到感兴趣的数据集。 3. 下载数据集:一旦你找到了想要使用的数据集,你可以点击数据集页面上的 "Download" 进行下载。 4. 参加竞赛:Kaggle 上有举办各种机器学习竞赛,你可以选择参加感兴趣的竞赛。竞赛页面会提供详细的问题描述、数据集和评估指标等信息。 5. 提交结果:在竞赛页面上,你可以下载竞赛提供的训练和测试数据集。你需要使用训练数据集建立模型,并在测试数据集上进行预测。最后,你将提交你的预测结果,Kaggle 会根据评估指标对你的结果进行评估。 6. 加入讨论和社区:Kaggle 是一个活跃的社区平台,你可以加入不同的讨论组、论坛或组织,并与其他数据科学家、机器学习工程师交流和分享经验。 此外,Kaggle 还提供了大量的教程和内置的笔记本资源,用于学习和实践机器学习算法和数据分析技术。你可以在 Kaggle 上搜索并浏览相关的教程资源,以提升你的数据科学技能。 希望这个简单的教程能帮助你开始使用 Kaggle!如有更多问题,请继续提问。
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值