数字人开源代码运行---wav2lip

代码地址:

Rudrabha/Wav2Lip: This repository contains the codes of "A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild", published at ACM Multimedia 2020. For HD commercial model, please try out Sync Labs (github.com)

论文地址:

2008.10010 (arxiv.org)

1、下载代码

2、安装环境

conda create -n wav2lip python==3.9.0
conda activate wav2lip
conda install ffmpeg

修改requirements.txt中依赖版本号为

安装依赖

pip install -r requirements.txt

2、下载模型

下载s3fd.pth模型,下载后放在face_detection/detection/sfd/s3fd.pth

项目地址中给出了训练好的模型链接,下载就可以了,四个下载后都放在checkpoints目录下。

3、推理

根据参考视频和音频生成对应的说话视频

python inference.py --checkpoint_path ./checkpoints/wav2lip_gan.pth --face ./demo/short_demo.mp4 --audio ./demo/test.wav

4、可能会遇到的问题:

issues中给出了答案:

修改audio.py 第一百行代码:
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
fmin=hp.fmin, fmax=hp.fmax)

Wav2Lip 报错TypeError: mel() takes 0 positional arguments but 2 positional arguments (and 3 keyword-only arguments) were given · Issue #634 · Rudrabha/Wav2Lip · GitHub

5、评价指标

evaluation目录中给出了Average Confidence,Average Minimum Distance评价指标的计算。利用的是syncnet项目计算。

参考:AI数字人:语音驱动人脸模型Wav2Lip-CSDN博客

<think>好的,我现在需要处理用户关于Wav2Lip数字人技术的查询。用户想要了解实现教程或开源项目。首先,我得回忆一下Wav2Lip的基本信息,它主要用于同步唇形与音频,常用于数字人项目。用户提到的引用中有几个关键点:使用C#/WPF集成、优化嘴部效果、与VITS模型结合提高实时性,以及环境安装步骤。 首先,用户需要教程和开源项目。我应该整理出分步的实现流程,包括环境配置、代码获取、准备素材、运行推理和集成到应用。根据引用[4],环境安装需要Python 3.9和FFmpeg,所以这部分要详细说明。代码部分,官方的GitHub仓库是必须提到的,还可能推荐一些社区项目,比如与SadTalker结合的例子。 然后,用户可能遇到的问题,比如嘴部不清晰,引用[2]提到解决方案,比如预处理视频帧、后处理优化、结合GAN或使用高清模型。这些需要作为优化建议列出。此外,引用[3]提到的与VITS集成优化实时性,可以作为一个高级应用场景,说明如何直接传递numpy数据跳过文件读取,提升效率。 开源项目方面,除了官方仓库,可能需要收集一些高星或活跃的项目,比如Wav2Lip-GFPGAN用于增强画质,或者Wav2Lip-HQ。同时,结合其他模型如SadTalker的项目可能对用户有帮助,特别是多模态驱动的案例。 注意事项部分,硬件要求、数据质量和模型调参都是关键点,需要提醒用户。相关问题部分,要涵盖同步原理、嘴型优化、实时性、多模态结合以及商业应用,这样用户可以有进一步探索的方向。 需要确保所有LaTeX格式正确,但用户的问题中可能不涉及数学公式,所以可能不需要使用。不过按照系统指令,如果有任何行内表达式,比如提到模型结构中的参数,需要用$...$,但这里可能不适用。检查引用标注是否正确,每个引用对应的点是否准确,比如环境安装引用[4],嘴部优化引用[2],VITS集成引用[3],WPF启动引用[1]。 最后,确保回答结构清晰,分步骤和部分,使用代码块展示命令行操作,以及相关开源项目的链接。语言要简洁,用中文,并且自然流畅,避免技术术语过于密集,适当解释步骤的目的,比如为什么需要安装FFmpeg,因为它处理音视频流。</think>### Wav2Lip数字人技术实现教程 #### 一、基础环境配置 1. 安装Python 3.9与FFmpeg ```bash conda create -n wav2lip python=3.9.0 conda activate wav2lip conda install ffmpeg # 用于音视频处理[^4] ``` 2. 安装依赖库 ```bash pip install numpy opencv-python torch librosa ``` #### 二、代码获取与模型下载 1. 克隆官方仓库 ```bash git clone https://github.com/Rudrabha/Wav2Lip.git ``` 2. 下载预训练模型 - 唇形同步模型:[wav2lip.pth](https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fradrabha%5Fm%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FWav2Lip%20Models%2F&ga=1) - 高清增强模型:[wav2lip_gan.pth](https://iiitaphyd-my.sharepoint.com/personal/radrabha_m_research_iiit_ac_in/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fradrabha%5Fm%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FWav2Lip%20Models%2F&ga=1) #### 三、核心实现流程 1. **输入准备** - 目标视频:人物面部特写(推荐25FPS,分辨率≥256x256) - 输入音频:需与视频时长对齐(支持WAV/MP3格式) 2. **运行推理** ```bash python inference.py --checkpoint_path wav2lip.pth \ --face input_video.mp4 \ --audio input_audio.wav \ --outfile output.mp4 ``` 3. **WPF集成示例** ```csharp // 引用System.Windows.Media.Imaging var videoSource = new Uri("output.mp4"); mediaElement.Source = videoSource; mediaElement.Play(); // 通过WPF控件播放生成视频[^1] ``` --- ### 开源项目推荐 | 项目名称 | 特点 | 链接 | |-------------------------|------------------------------------------|----------------------------------------------------------------------| | Wav2Lip官方实现 | 基础唇形同步,支持GAN增强 | [GitHub](https://github.com/Rudrabha/Wav2Lip) | | Wav2Lip-GFPGAN | 结合超分辨率模型提升画质 | [GitHub](https://github.com/xinntao/GFPGAN) | | SadTalker-Wav2Lip | 支持多模态驱动(表情+唇形) | [GitHub](https://github.com/OpenTalker/SadTalker) | | Wav2Lip-HQ | 改进嘴部细节生成 | [GitHub](https://github.com/indianajson/Wav2Lip-HQ) | --- ### 嘴型优化方案 1. **预处理优化** - 使用人脸关键点检测对齐视频帧(如DLIB库) - 对输入视频进行超分辨率重建[^2] 2. **后处理方法** ```python # 使用形态学操作增强嘴部区域 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)) enhanced_mouth = cv2.morphologyEx(mouth_roi, cv2.MORPH_CLOSE, kernel) ``` 3. **模型级改进** - 联合训练唇形分割网络(如LipNet) - 引入时间卷积网络(TCN)优化时序连续性 --- ### 实时性优化技巧 1. **数据流优化** ```python # 直接传递numpy数据,避免文件IO[^3] audio_numpy = vits_model.generate(text) # VITS生成音频 wav2lip_input = librosa.util.normalize(audio_numpy) ``` 2. **模型轻量化** - 使用知识蒸馏压缩模型(如MobileNetV3替换ResNet50) - 量化模型至FP16精度 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值