目标检测中的损失函数是模型训练的核心部分,它衡量了模型预测与真实标注之间的差异,并通过优化损失函数来指导模型参数的更新。损失函数通常由多个部分组成,包含了不同层面的误差,具体包括 位置损失、分类损失 和 置信度损失,这些损失合起来决定了模型在目标检测任务中的性能。
目标检测中的损失函数主要包括三个部分:
1. 位置损失(Localization Loss): 位置损失衡量的是模型预测的边界框(bounding box)与真实边界框之间的差异。通常使用的是 平滑L1损失(Smooth L1 loss) 或 L2损失(Mean Squared Error)。
平滑L1损失: 平滑L1损失是一种在边界框回归任务中广泛使用的损失函数。它在误差较小时使 用L2损失,而在误差较大时则使用L1损失。这样可以减小异常大的预测框对训练的影响。
公式:
其中,x
是预测框与真实框之间的误差。
2. 分类损失(Classification Loss): 分类损失衡量的是模型对每个框的分类结果与真实标签之间的差异。对于每个预测框,模型需要预测其是否包含目标对象以及属于哪个类别。
交叉熵损失(Cross-Entropy Loss): 目标检测中常用的分类损失是 交叉熵损失,它用于多类分类任务,衡量预测的类别概率分布与真实类别标签之间的差异。
公式:
其中,p_i
是模型预测的类别概率,y_i
是真实类别标签(通常为one-hot编码)。对每个检测框计算分类损失,然后将所有框的损失累加。
Focal Loss: 在处理类不平衡时(例如目标检测中的前景与背景比例极不均衡), Focal Loss 可以有效减轻对易分类样本的关注,聚焦于难以分类的样本。Focal Loss 是在交叉熵损失基础上进行修改的。
公式: