PyTorch Hub的使用简单到不能再简单,不需要下载模型,只用了一个torch.hub.load()就完成了对图像分类模型AlexNet的调用。
import torch
model = torch.hub.load('pytorch/vision', 'alexnet', pretrained=True)
model.eval()
下面让我们来看看每个应用的实例。
1、查询可用的模型
用户可以使用torch.hub.list()这个API列出repo中所有可用的入口点。比如你想知道PyTorch Hub中有哪些可用的计算机视觉模型:
torch.hub.list('pytorch/vision')
['alexnet',
'deeplabv3_resnet101',
'densenet121',
...
'vgg16',
'vgg16_bn',
'vgg19',
'vgg19_bn']
之前错误的
xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
import torch
xlmr = torch.hub.load('pytorch/fairseq:main', 'xlmr.large')
自然语言处理相关的
https://blog.csdn.net/zzx188891020/article/details/105795126