为什么沿着梯度相反的方向更新参数

本文解释了为何沿着梯度相反方向,损失函数下降最快。通过泰勒公式和一阶导数的概念,说明了在梯度的反方向上更新参数可以使函数值减少最多,并引入学习率来控制下降速度。理解这一原理对于优化神经网络的损失函数至关重要。
摘要由CSDN通过智能技术生成

为什么说,沿着梯度相反的方向函数值下降最快

我们假设损失函数是 f ( x ) f(x) f(x) x x x就是神经网络的参数,我们的目的是最小化损失函数,也就是不断让 f ( x ) f(x) f(x)减小。

那么根据高等数学中的泰勒公式,我们知道函数 f ( x ) f(x) f(x)的一阶泰勒公式如下
f ( x + Δ x ) = f ( x ) + f ′ ( x ) Δ x + o ( Δ x ) f(x+\Delta x)=f(x)+f'(x)\Delta x+o(\Delta x) f(x+Δx)=f(x)+f(x)Δx+o(Δx)

其中 f ′ ( x ) f'(x) f(x)我们都知道是导数,在神经网络中,它就是梯度,因为 x x x是很多的参数,所以 x x x f ′ ( x ) f'(x) f(x)都是向量

我们的目的是让函数值减小,所以 f ( x + Δ x ) f(x+\Delta x) f(x+Δx)要小于 f ( x ) f(x) f(x)
那么根据上式我们知道,想要 f ( x + Δ x ) < f ( x ) f(x+\Delta x)<f(x) f(x+Δx)<f(x)只能有 f ′ ( x ) Δ x f'(x)\Delta x f(x)Δx小于0。

f ′ ( x ) Δ x f'(x)\Delta x f(x)Δx是两个向量在做内积相乘,我们又知道两个向量的内积公式如下:

f ′ ( x ) Δ x = ∥ f ′ ( x ) ∥ ∥ Δ x ∥ cos ⁡ θ f'(x)\Delta x=\left\|f'(x)\right\|\left\| \Delta x\right\|\cos\theta f(x)Δx=f(x)Δxcosθ

显然 f ′ ( x ) Δ x f'(x)\Delta x f(x)Δx的取值范围是 [ − ∥ f ′ ( x ) ∥ 2 , ∥ f ′ ( x ) ∥ 2 ] [-\left\|f'(x)\right\|^2,\left\|f'(x)\right\|^2] [f(x)2,f(x)2]。(注意我这里说的不严谨,因为 Δ x \Delta x Δx的取值是任意的,我们姑且认为它不会大于 f ′ ( x ) f'(x) f(x))

也就是说当 Δ x = f ′ ( x ) \Delta x=f'(x) Δx=f(x)时,与梯度同方向,此时 cos ⁡ θ = 1 \cos\theta=1 cosθ=1所以
f ′ ( x ) Δ x = ∥ f ′ ( x ) ∥ 2 f'(x)\Delta x=\left\|f'(x)\right\|^2 f(x)Δx=f(x)2

那么我们也就知道了当 Δ x = − f ′ ( x ) \Delta x=-f'(x) Δx=f(x),与梯度相反方向的时候(因为都是向量,所以这个负号表示的就是反方向。),此时 cos ⁡ θ = − 1 \cos\theta=-1 cosθ=1,所以
f ′ ( x ) Δ x = − ∥ f ′ ( x ) ∥ 2 f'(x)\Delta x=-\left\|f'(x)\right\|^2 f(x)Δx=f(x)2

那么显然 f ( x + Δ x ) = f ( x ) − ∥ f ′ ( x ) ∥ 2 f(x+\Delta x)=f(x)-\left\|f'(x)\right\|^2 f(x+Δx)=f(x)f(x)2函数值下降的最多。
f ( x + Δ x ) = f ( x ) + ∥ f ′ ( x ) ∥ 2 f(x+\Delta x)=f(x)+\left\|f'(x)\right\|^2 f(x+Δx)=f(x)+f(x)2函数值上升的最多。

所以说沿着梯度的方向,函数值变化最快

需要注意是,我们要引入步长,也就是 Δ x = − α f ′ ( x ) \Delta x=-\alpha f'(x) Δx=αf(x),也就是学习率,因为不能让函数值一下子变化太大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值