MR-CNN 详解

MR-CNN是一种增强对象表示的模型,通过多区域CNN和语义分割感知来改进目标检测。模型包括激活映射模块和区域适应模块,采用不同的区域变换策略,如中心区域、边框区域和上下文区域,以提高定位和分类能力。此外,通过弱监督的语义分割线索,进一步提升目标检测的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Object detection via a multi-region & semantic segmentation-aware CNN model

论文链接


  以往的目标检测模型在提取完 region proposals 后,直接将生成的 region 输入网络。那么实际上,在输入网络之前,我们也可以对 region 再进行变换。本篇论文就是这种思想。如果在 region 输入网络之前,对 region 进行变换。例如,我们只看一部分 region,或者我们将 bounding box 放大,关注其上下文环境。对于最终的分类和 bounding box 的回归应该是都会有所提高的。
  本篇论文的主要贡献:(1)提供了一些丰富的对象表示,能够捕获各种不同的判别外观的因素。(2)使用语义分割的弱监督方式来感知目标检测中的对象。(3)使用 Iterative Localization 和 Bounding box voting 提高了目标定位的能力

图1

图 1:三种目标检测中常见的情况。

  那么变换 region proposals 的 idea 是从哪来的呢?我们看图 1。对于第一幅图中的羊,如果我们不结合图像中的上下文环境,很难检测且很难判断它是羊,因为此目标过小。对于第二幅图来说,如果加入上下文环境,是会对最后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值