MR-CNN 详解
Object detection via a multi-region & semantic segmentation-aware CNN model
以往的目标检测模型在提取完 region proposals 后,直接将生成的 region 输入网络。那么实际上,在输入网络之前,我们也可以对 region 再进行变换。本篇论文就是这种思想。如果在 region 输入网络之前,对 region 进行变换。例如,我们只看一部分 region,或者我们将 bounding box 放大,关注其上下文环境。对于最终的分类和 bounding box 的回归应该是都会有所提高的。
本篇论文的主要贡献:(1)提供了一些丰富的对象表示,能够捕获各种不同的判别外观的因素。(2)使用语义分割的弱监督方式来感知目标检测中的对象。(3)使用 Iterative Localization 和 Bounding box voting 提高了目标定位的能力。
图 1:三种目标检测中常见的情况。
那么变换 region proposals 的 idea 是从哪来的呢?我们看图 1。对于第一幅图中的羊,如果我们不结合图像中的上下文环境,很难检测且很难判断它是羊,因为此目标过小。对于第二幅图来说,如果加入上下文环境,是会对最后