【线性代数】向量点乘与叉乘含义与计算方式

一、点乘 → 内积 / 数量积

        设 \vec{a}=[a_1, a_2, ... , a_n], \vec{b}=[b_1, b_2,...,b_n]

1、代数形式

        \vec{a} \cdot \vec{b}=a_1b_1+a_2b_2+...+a_nb_n

        注:要求 \vec{a} 与 \vec{b} 必为同型向量

2、几何形式

        \vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|cos\theta

        几何意义:表征或计算两个向量间的夹角,及 \vec{b} 在 \vec{a} 方向上的投影

        \vec{a}\cdot\vec{b}>0:夹角在0°到90°之间

        \vec{a}\cdot\vec{b}=0:相互垂直,即正交  

        \vec{a}\cdot\vec{b}<0:夹角在90°到180°之间

二、叉乘 → 向量积 / 外积 / 叉积

        设 \vec{a}=[x_1\ y_1\ z_1], \vec{b}=[x_2\ y_2\ z_2]

        计算公式

        \vec{a}\times \vec{b}=\begin{vmatrix}\mathrm{i}&\mathrm{j}&\mathrm{k}\\x_{1}&y_{1}&z_{1}\\x_{2}&y_{2}&z_{2}\end{vmatrix}=(y_{1}z_{2}-y_{2}z_{1})i-(x_{1}z_{2}-x_{2}z_{1})j+(x_{1}y_{2}-x_{2}y_{1})k

        i=(1,0,0)\;j=(0,1,0)\;k=(0,0,1)

        简化后:

        a\times b=(y_{1}z_{2}-y_{2}z_{1},-(x_{1}z_{2}-x_{2}z_{1}),x_{1}y_{2}-x_{2}y_{1})

        几何意义:

        (1)二维:求得由向量a和向量b构成的平行四边形的面积

        (2)三维:求得第三个垂直于a,b的向量,即法向量

                方向判定:右手法则

                \vec{a}\times \vec{b}=\vec{c} 情况下,四指方向由\vec{a}指向\vec{b},拇指方向即为\vec{c}的方向

点乘与叉乘的区别

        (1)点乘结果是一个标量,叉乘结果是一个向量。

        (2)点乘满足交换律,而叉乘满足反交换律。

        (3)点乘用于计算向量间的夹角、投影和长度;叉乘用于计算法向量、面积和判断线性

                 方向。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值