图形学笔记(二)图形学中的线性代数——向量、矩阵(转置、逆)、叉乘、点乘

图形学笔记(一)图形学概览:图形学的定义、应用、学习内容、参考读物、与视觉的区别
图形学笔记(三)变换——缩放、镜像、切变

此节对应虎书第二章(Miscellaneous Math)与第五章(Linear Algebra)

1. 图形学所需基础

1.1 基础数学

  • 线性代数,微积分,统计 Linear algebra,calculus,statics

1.2 基础物理

  • 光学,力学 Opitics,Mechanics

1.3 其他

  • 信号处理 Signal processing (走样、反走样)
  • 数值分析 Numerical analysis

需要一点美学…

2. 向量Vectors

在这里插入图片描述

2.1 向量的基本性质

  • 写作 a ⃗ \vec a a 或粗体的 a
  • 由起点和终点表示 A B → \overrightarrow{AB} AB
  • 具有方向和长度
  • 没有绝对的开始位置

2.2 向量标准化

  • 向量的长度写作 || a ⃗ \vec a a ||
2.2.1 单位向量
  • 单位向量是长度为1的向量
  • 单位向量的获得: a ^ \hat a a^= a ⃗ \vec a a /|| a → \overrightarrow a a ||
  • 使用单位向量来代表方向

2.3 向量的基本操作

2.1 向量相加

在这里插入图片描述

  • 几何上:平行四边形法则(左)和三角形法则(右)。
  • 代数上:简单的坐标相加
2.2 向量的表示

在这里插入图片描述

  • 笛卡尔坐标系中的X和Y可以是任何向量(通常是垂直的)
  • 一般向量表示是列向量
    A = ( x y ) A= \begin{pmatrix} x \\ y \\ \end{pmatrix} A=(xy)
    也可以转置来表示成行向量:
    A T = ( x , y ) A^T=(x,y) AT=(x,y)
    计算向量长度:
    ∥ A ∥ = x 2 + y 2 \Vert A \Vert=\sqrt {x^2+y^2} A=x2+y2
2.3 向量的点乘

在这里插入图片描述

2.3.1 点乘的基本运算

a → ⋅ b → = ∥ a → ∥ ∥ b → ∥ cos ⁡ θ \overrightarrow a · \overrightarrow b = \Vert \overrightarrow a \Vert \Vert \overrightarrow b \Vert \cos\theta a b =a b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值