图形学笔记(一)图形学概览:图形学的定义、应用、学习内容、参考读物、与视觉的区别
图形学笔记(三)变换——缩放、镜像、切变
此节对应虎书第二章(Miscellaneous Math)与第五章(Linear Algebra)
1. 图形学所需基础
1.1 基础数学
- 线性代数,微积分,统计 Linear algebra,calculus,statics
1.2 基础物理
- 光学,力学 Opitics,Mechanics
1.3 其他
- 信号处理 Signal processing (走样、反走样)
- 数值分析 Numerical analysis
需要一点美学…
2. 向量Vectors
2.1 向量的基本性质
- 写作 a ⃗ \vec a a 或粗体的 a
- 由起点和终点表示 A B → \overrightarrow{AB} AB
- 具有方向和长度
- 没有绝对的开始位置
2.2 向量标准化
- 向量的长度写作 || a ⃗ \vec a a||
2.2.1 单位向量
- 单位向量是长度为1的向量
- 单位向量的获得: a ^ \hat a a^= a ⃗ \vec a a/|| a → \overrightarrow a a||
- 使用单位向量来代表方向
2.3 向量的基本操作
2.1 向量相加
- 几何上:平行四边形法则(左)和三角形法则(右)。
- 代数上:简单的坐标相加
2.2 向量的表示
- 笛卡尔坐标系中的X和Y可以是任何向量(通常是垂直的)
- 一般向量表示是列向量
A = ( x y ) A= \begin{pmatrix} x \\ y \\ \end{pmatrix} A=(xy)
也可以转置来表示成行向量:
A T = ( x , y ) A^T=(x,y) AT=(x,y)
计算向量长度:
∥ A ∥ = x 2 + y 2 \Vert A \Vert=\sqrt {x^2+y^2} ∥A∥=x2+y2
2.3 向量的点乘
2.3.1 点乘的基本运算
a → ⋅ b → = ∥ a → ∥ ∥ b → ∥ cos θ \overrightarrow a · \overrightarrow b = \Vert \overrightarrow a \Vert \Vert \overrightarrow b \Vert \cos\theta a⋅b=∥a∥∥b